打通钉钉+WebHook: 日志服务(SLS)告警实践

本文涉及的产品
对象存储 OSS,20GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
阿里云盘企业版 CDE,企业版用户数5人 500GB空间
简介: 用一个最最常用的案例(Nginx日志分析)来说明当前使用场景,告警要解决的3个问题:是否有错误;是否有性能问题;是否有流量急跌或暴涨

阿里云日志服务是针对实时数据一站式服务,用户只需要将精力集中在分析上,过程中数据采集、对接各种存储计算、数据索引和查询等琐碎工作等都可以交给日志服务完成。

9月日志服务升级实时分析功能(LogSearch/Analytics),可以使用查询+SQL92语法对日志进行实时分析,并在结果分析可视化上,支持自带DashboardDataVGrafanaTableua(通过JDBC)、QuickBI等可视化方式。

在监控场景中光有可视化是不够的,日志服务提供告警与通知功能如下:

  1. 将查询(SavedSearch)保存下来
  2. 对查询设置触发周期(间隔),并对执行结果设定判断条件并且告警
  3. 设置告警动作(如何通知),目前支持通知方式有3种:
    • 通知中心:在阿里云通知中心可以设置多个联系人,通知会通过邮件和短信方式发送
    • WebHook:包括钉钉机器人,及自定义WebHook等
    • (即将支持)写回日志服务(logstore):可以通过流计算,函数服务进行事件订阅;也可以对告警生成视图和报表
  1. 告警功能配置与使用可以参见告警文档
  2. 除自身告警外,日志服务与云监控已打通,可以使用云监控日志告警功能。

image

告警设置案例(Nginx日志为例)

我们用一个最最常用的案例(Nginx日志分析)来说明当前使用场景,告警要解决的3个问题:

  1. 是否有错误
  2. 是否有性能问题
  3. 是否有流量急跌或暴涨

准备工作(Nginx日志接入)

  1. 日志数据采集。详细步骤请参考5分钟快速入门 或 直接在Logstore页面 数据源接入向导 中设置。
  2. 索引设置,详细步骤请参考索引设置与可视化或最佳实践网站日志分析案例。
  3. 对关键指标设置视图 + 告警。

(在做完1、2步骤后,在查询页面可以看到原始日志)

image.png

Sample视图(例子):

Snip20171211_28

1. 是否有错误

错误一般有这样几类:404(请求无法找到地址)/502/500(服务端错误),我们一般只需关心500(服务端错误),将这个query保存下来,统计单位时间内错误数c。告警可以设定一个规则c > 0 则产生告警:

status:500 | select count(1) as c

这种方式比较简单,但往往过于敏感,对于一些业务压力较大的服务而言有零星几个500是正常的。为了应对这种情况,我们可以在告警条件中设置触发次数为2次:只有连续2次检查都符合条件后再发告警。

2. 是否有性能问题

服务器运行过程中虽然没有错误,但有可能会出现延迟(Latency)增大情况,因此我们可以针对延迟进行告警。

例如我们可以通过以下方式计算某个接口(“/adduser")所有写请求(”Post“)延时。告警规则设置为 l > 300000 (当平均值超过300ms后告警)。

Method:Post and URL:"/adduser" | select avg(Latency) as l

利用平均值来报警简单而直接,但这种方法往往会使得一些个体请求延时被平均掉,反馈不出问题。例如我们对该时间段的Latency可以计算一个数学上的分布(划分20个区间,计算每个区间内的数目),从分布图上可以看到大部分请求延时非常低(<20ms),但最高的延时有2.5S。

Method:Post and URL:"/adduser" | select numeric_histogram(20, Latency)

image

为应对这种情况,我们可以用数学上的百分数(99%最大延时)来作为报警条件,这样既可以排除偶发的延时高引起误报,也能对整体的演示更有代表性。以下的语句计算了99%分位的延时大小 approx_percentile(Latency, 0.99) ,同样我们也可以修改第二个参数进行其他分位的划分,例如中位数的请求延时 approx_percentile(Latency, 0.5)

Method:Post and URL:"/adduser" | select approx_percentile(Latency, 0.99) as p99

在监控的场景中,我们也可以在一个图上绘出平均延时,50%分位延时,以及90%分位延时。以下是按一天的窗口(1440分钟)统计各分钟内延时的图:

* | select avg(Latency) as l, approx_percentile(Latency, 0.5) as p50, approx_percentile(Latency, 0.99) as p99, date_trunc('minute', time) as t group by t order by t desc limit 1440

image

3. 是否有流量急跌或暴涨?

服务器端自然流量一般符合概率上的分布,会有一个缓慢上涨或下降过程。流量急跌或暴涨(短时间内变化非常大)一般都是不正常的现象,需要留意。

(例如下图的监控中,在2分钟时间内流量大小下跌30%以上,在2分钟内后又迅速恢复)

image

急跌和暴涨一般会有如下参考系:

  • 上一个时间窗口:环比上一个时间段
  • 上一天该时间段的窗口:环比昨天
  • 上一周该时间段的窗口:环比上周

我们这里以第一种情况来作为case讨论,计算流量infow数据的变动率(也可以换成QPS等流量)。

3.1 首先定义一个计算窗口

例如我们定一个1分钟的窗口,统计该分钟内的流量大小,以下是一个5分钟区间统计:

* | select sum(inflow)/(max(__time__)-min(__time__)) as inflow , __time__-__time__%60  as window_time from log group by window_time order by window_time limit 15

从结果分布上看,每个窗口内的平均流量 sum(inflow)/(max(time)-min(time)) 应该是均匀的:

image

3.2 计算窗口内的差异值(最大值变化率)

这里我们会用到子查询,我们写一个查询,从上述结果中计算最大值 或 最小值 与平均值的变化率(这里的max_ratio),例如如下计算结果max_ratio 为 1.02。我们可以定义一个告警规则,如果max_ratio > 1.5 (变化率超过50%)就告警。

 * | select max(inflow)/avg(inflow) as max_ratio from (select sum(inflow)/(max(__time__)-min(__time__)) as inflow , __time__-__time__%60  as window_time from log group by window_time order by window_time limit 15)

image

3.3 计算窗口内的差异值(最近值变化率)

在一些场景中我们更关注最新的数值是否有波动(是否已经恢复),那可以通过max_by方法获取最大windows_time中的流量来进行判断,这里计算的最近值为lastest_ratio=0.97。

注意:

  • 这里的max_by函数计算结果为字符类型,我们需要强转成数字类型
  • 如果要计算变化相对率,可以用(1.0-max_by(inflow, window_time)/1.0/avg(inflow)) as lastest_ratio 代替
 * | select max_by(inflow, window_time)/1.0/avg(inflow) as lastest_ratio from (select sum(inflow)/(max(__time__)-min(__time__)) as inflow , __time__-__time__%60  as window_time from log group by window_time order by window_time limit 15)

image

3.4 计算窗口内的差异值(定义波动率,上一个值与下一个变化率)

波动率另外一种计算方法是数学上一阶导数,既当前窗值 与 上个窗口值的变化值。

image.png

我们可以使用窗口函数(lag)进行计算,窗口函数中提取当前inflow与上一个周期inflow "lag(inflow, 1, inflow)over() " 进行差值,并除以当前值作为一个变化比率:

 * | select (inflow- lag(inflow, 1, inflow)over() )*1.0/inflow as diff, from_unixtime(window_time) from (select sum(inflow)/(max(__time__)-min(__time__)) as inflow , __time__-__time__%60  as window_time from log group by window_time order by window_time limit 15)

例如在我们例子中,11点39分流量有一个较大的降低(窗口之间变化率为40%以上):

如果要定义一个绝对变化率,可以使用abs函数(绝对值)对计算结果进行统一

image.png

总结

日志服务查询分析能力是完整SQL92,支持各种数理统计与计算等,只要会用SQL都能进行快速分析,欢迎尝试!

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
1月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
286 30
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
10天前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
|
2月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
318 3
|
20天前
|
存储 监控 安全
什么是事件日志管理系统?事件日志管理系统有哪些用处?
事件日志管理系统是IT安全的重要工具,用于集中收集、分析和解释来自组织IT基础设施各组件的事件日志,如防火墙、路由器、交换机等,帮助提升网络安全、实现主动威胁检测和促进合规性。系统支持多种日志类型,包括Windows事件日志、Syslog日志和应用程序日志,通过实时监测、告警及可视化分析,为企业提供强大的安全保障。然而,实施过程中也面临数据量大、日志管理和分析复杂等挑战。EventLog Analyzer作为一款高效工具,不仅提供实时监测与告警、可视化分析和报告功能,还支持多种合规性报告,帮助企业克服挑战,提升网络安全水平。
|
1月前
|
Oracle 关系型数据库 数据库
【赵渝强老师】Oracle的参数文件与告警日志文件
本文介绍了Oracle数据库的参数文件和告警日志文件。参数文件分为初始化参数文件(PFile)和服务器端参数文件(SPFile),在数据库启动时读取并分配资源。告警日志文件记录了数据库的重要活动、错误和警告信息,帮助诊断问题。文中还提供了相关视频讲解和示例代码。
|
2月前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1698 14
|
1月前
|
存储 监控 安全
什么是日志管理,如何进行日志管理?
日志管理是对IT系统生成的日志数据进行收集、存储、分析和处理的实践,对维护系统健康、确保安全及获取运营智能至关重要。本文介绍了日志管理的基本概念、常见挑战、工具的主要功能及选择解决方案的方法,强调了定义管理目标、日志收集与分析、警报和报告、持续改进等关键步骤,以及如何应对数据量大、安全问题、警报疲劳等挑战,最终实现日志数据的有效管理和利用。
|
2月前
|
Python
log日志学习
【10月更文挑战第9天】 python处理log打印模块log的使用和介绍
42 0
|
2月前
|
数据可视化
Tensorboard可视化学习笔记(一):如何可视化通过网页查看log日志
关于如何使用TensorBoard进行数据可视化的教程,包括TensorBoard的安装、配置环境变量、将数据写入TensorBoard、启动TensorBoard以及如何通过网页查看日志文件。
265 0
|
2月前
|
存储 分布式计算 NoSQL
大数据-136 - ClickHouse 集群 表引擎详解1 - 日志、Log、Memory、Merge
大数据-136 - ClickHouse 集群 表引擎详解1 - 日志、Log、Memory、Merge
58 0

相关产品

  • 日志服务
  • 下一篇
    DataWorks