【云上ELK系列】阿里云Elasticsearch的Apache日志分析实践

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 阿里云Elasticsearch采集上游数据的方式有很多种,其中有一个与开源完全兼容的方案:通过logstash及logstash周围的强大的plugin实现数据采集。 首先我们需要在ECS中来安装部署logstash,购买阿里云ECS服务,准备1.8以上版本的JDK。

阿里云Elasticsearch采集上游数据的方式有很多种,其中有一个与开源完全兼容的方案:通过logstash及logstash周围的强大的plugin实现数据采集。

首先我们需要在ECS中来安装部署logstash,购买阿里云ECS服务,准备1.8以上版本的JDK。

wget https://artifacts.elastic.co/downloads/logstash/logstash-5.5.3.tar.gz

解压安装

tar -xzvf logstash-5.5.3.tar.gz 

通过logstash来做数据写elasticsearch的方案,我们需要创建一个logstash的管道,logstash的管道分为三个部分:

input {   
}
# 该部分被注释,表示filter是可选的
filter {  
}
output {   
}
  • 其中input中配置数据源;
  • output中配置目标源;
  • filter是可选配的部分,一般会配置数据过滤的逻辑;

这部分配置很简单,在logstash的目录下创建一个.conf的文件,按照上述的格式配置input和output:

input {
    file {
        path => "/usr/local/demoData/*.log"
        start_position => beginning
    }
}
output {
    elasticsearch {
        hosts => ["http://*******************:9200"]
        user => "*******"
        password => "***********"
    }
}

注:阿里云elasticsearch由于预置了X-Pack插件,所有的访问均需要做认证,您的output中需要配置username和password信息。

这次我希望将阿里云ECS上经常产生的Apache日志indexing到elasticsearch中,可以将logstash直接部署在web server所在的ECS中,如果担心影响业务,可以部署在网络可达的另一台ECS中。

注:logstash的input支持很多输入形式,如果将logstash部署在网络可达的另一台ECS中,则需要配置http的input格式模板,具体可以参考文档

input {
 http {
      host => "**********"
   port => "**********"
 }
}

由于阿里云Elasticsearch部署在VPC环境内,如果部署logstash的ECS处于经典网络,需要通过Classiclink的方式与VPC做打通,可以参考《经典网络访问常见问题》

接下来介绍如何通过logstash的filter快速解析Apache日志
Apache日志中一般会包含如下信息:

Information Field Name
IP Address clientip
User ID ident
User Authentication auth
timestamp timestamp
HTTP Verb verb
Request body request
HTTP Version httpversion
HTTP Status Code response
Bytes served bytes
Referrer URL referrer
User agent agent

假设我们希望从日志中发觉一些用户分布的信息,并且让不关系技术的运营同学可以直观的感受到,我们选择用Gork过滤器来解析Apache网络日志。

filter {
    grok {
        match => { "message" => "%{COMBINEDAPACHELOG}"}
    }
}

可以将原始的日志信息:

66.249.73.135 - - [04/Jan/2015:05:30:06 +0000] "GET /blog/web/firefox-scrolling-fix.html HTTP/1.1" 200 8956 "-" "Mozilla/5.0 (iPhone; CPU iPhone OS 6_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/6.0 Mobile/10A5376e Safari/8536.25 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

过滤成标准的Json结构:

{
"clientip" : "66.249.73.135",
"ident" : ,
"auth" : ,
"timestamp" : "04/Jan/2015:05:30:06 +0000",
"verb" : "GET",
"request" : "/blog/web/firefox-scrolling-fix.html",
"httpversion" : "HTTP/1.1",
"response" : "200",
"bytes" : "8956",
"referrer" : "http://www.google.com/bot.html",
"agent" : "Mozilla/5.0 (iPhone; CPU iPhone OS 6_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/6.0 Mobile/10A5376e Safari/8536.25"
}

其中,我们可以通过IP来解析用户访问地址信息(当然这个是不准确的),方式是使用 geoip 插件来完成。

filter {
    geoip {
        source => "clientip"
    }
}

根据IP查对应的地址信息,并将地址信息作为 geoip 字段写入日志信息中。
geoip可以查询IP,获取如下的描述信息:

"geoip":{
        "timezone":"America/Los_Angeles",
        "ip":"66.249.73.135",
        "latitude":37.419200000000004,
        "continent_code":"NA",
        "city_name":"Mountain View",
        "country_name":"United States",
        "country_code2":"US",
        "dma_code":807,
        "country_code3":"US",
        "region_name":"California",
        "location":{
               "lon":-122.0574,
               "lat":37.419200000000004
        },
        "postal_code":"94043",
        "region_code":"CA",
        "longitude":-122.0574
},

我们可以通过geoip中的坐标信息,如location,在Kibana中做基于地图的访问人群分布的可视化展现了。
undefined

通过上述描述的方式,我们可以批量的处理ECS中的日志信息,并在Kibana中完成配置,最终获取如下的展示效果:
image.png | center | 704x395

参考文档《Configuring Logstash》

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
1月前
|
Rust 前端开发 JavaScript
Tauri 开发实践 — Tauri 日志记录功能开发
本文介绍了如何为 Tauri 应用配置日志记录。Tauri 是一个利用 Web 技术构建桌面应用的框架。文章详细说明了如何在 Rust 和 JavaScript 代码中设置和集成日志记录,并控制日志输出。通过添加 `log` crate 和 Tauri 日志插件,可以轻松实现多平台日志记录,包括控制台输出、Webview 控制台和日志文件。文章还展示了如何调整日志级别以优化输出内容。配置完成后,日志记录功能将显著提升开发体验和程序稳定性。
65 1
Tauri 开发实践 — Tauri 日志记录功能开发
|
18天前
|
消息中间件 存储 监控
构建高可用性Apache Kafka集群:从理论到实践
【10月更文挑战第24天】随着大数据时代的到来,数据传输与处理的需求日益增长。Apache Kafka作为一个高性能的消息队列服务,因其出色的吞吐量、可扩展性和容错能力而受到广泛欢迎。然而,在构建大规模生产环境下的Kafka集群时,保证其高可用性是至关重要的。本文将从个人实践经验出发,详细介绍如何构建一个高可用性的Kafka集群,包括集群规划、节点配置以及故障恢复机制等方面。
51 4
|
1月前
|
存储 运维 监控
超越传统模型:从零开始构建高效的日志分析平台——基于Elasticsearch的实战指南
【10月更文挑战第8天】随着互联网应用和微服务架构的普及,系统产生的日志数据量日益增长。有效地收集、存储、检索和分析这些日志对于监控系统健康状态、快速定位问题以及优化性能至关重要。Elasticsearch 作为一种分布式的搜索和分析引擎,以其强大的全文检索能力和实时数据分析能力成为日志处理的理想选择。
103 6
|
17天前
|
存储 数据挖掘 数据处理
巴别时代使用 Apache Paimon 构建 Streaming Lakehouse 的实践
随着数据湖技术的发展,企业纷纷探索其优化潜力。本文分享了巴别时代使用 Apache Paimon 构建 Streaming Lakehouse 的实践。Paimon 支持流式和批处理,提供高性能、统一的数据访问和流批一体的优势。通过示例代码和实践经验,展示了如何高效处理实时数据,解决了数据一致性和故障恢复等挑战。
99 61
|
10天前
|
存储 SQL 监控
|
1月前
|
存储 运维 监控
Elasticsearch Serverless 高性价比智能日志分析关键技术解读
本文解析了Elasticsearch Serverless在智能日志分析领域的关键技术、优势及应用价值。
Elasticsearch Serverless 高性价比智能日志分析关键技术解读
|
10天前
|
自然语言处理 监控 数据可视化
|
10天前
|
运维 监控 安全
|
14天前
|
存储 监控 安全
|
13天前
|
存储 数据采集 监控
开源日志分析Elasticsearch
【10月更文挑战第22天】
42 5

相关产品

  • 检索分析服务 Elasticsearch版
  • 推荐镜像

    更多