Apache Flink源码解析之stream-sink

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 上一篇我们谈论了Flink stream source,它作为流的数据入口是整个DAG(有向无环图)拓扑的起点。那么与此对应的,流的数据出口就是跟source对应的Sink。这是我们本篇解读的内容。 SinkFunction 跟SourceFunction对应,Flink针对Sink的根接口被称为SinkFunction。

上一篇我们谈论了Flink stream source,它作为流的数据入口是整个DAG(有向无环图)拓扑的起点。那么与此对应的,流的数据出口就是跟source对应的Sink。这是我们本篇解读的内容。

SinkFunction

SourceFunction对应,Flink针对Sink的根接口被称为SinkFunction。继承自Function这一标记接口。SinkFunction接口只提供了一个方法:

    void invoke(IN value) throws Exception;

该方法提供基于记录级别的调用(也就是每个被输出的记录都会调用该接口一次)。上面方法的参数value即为需要输出的记录。

SinkFunction相对来说比较简洁,下面我们来看一下它的实现者。

内置的SinkFunction

同样,我们先来看一下完整的类型继承体系:

flink-stream-sink_all-class-diagram

DiscardingSink

这是最简单的SinkFunction的实现,它的实现等同于没有实现(其实现为空方法)。它的作用就是将记录丢弃掉。它的主要场景应该是那些无需最终处理结果的记录。

WriteSinkFunction

WriteSinkFunction是一个抽象类。该类的主要作用是将需要输出的tuples(元组)作为简单的文本输出到指定路径的文件中去,元组被收集到一个list中去,然后周期性得写入文件。

WriteSinkFunction的构造器接收两个参数:

  • path : 需要写入的文件路径
  • format : WriteFormat的实例,用于指定写入数据的格式

在构造器中,它调用方法cleanFile,该方法用于初始化指定path的文件。初始化的行为是:如果不存在则创建,如果存在则清空

invoke方法的实现:

    public void invoke(IN tuple) {

        tupleList.add(tuple);
        if (updateCondition()) {
            format.write(path, tupleList);
            resetParameters();
        }

    }

从实现来看,其先将需要sink的元组加入内部集合。然后调用updateCondition方法。该方法是WriteSinkFunction定义的抽象方法。用于实现判断将tupleList写入文件以及清空tupleList的条件。接着将集合中的tuple写入到指定的文件中。最后又调用了resetParameters方法。该方法同样是一个抽象方法,它的主要用途是当写入的场景是批量写入时,可能会有一些状态参数,该方法就是用于对状态进行reset。

WriteSinkFunctionByMillis

该类是WriteSinkFunction的实现类。它支持以指定的毫秒数间隔将tuple批量写入文件。间隔由构造器参数millis指定。在内部,WriteSinkFunctionlastTime维护上一次写入的时间状态。它主要涉及上面提到的两个抽象方法的实现:

    protected boolean updateCondition() {
        return System.currentTimeMillis() - lastTime >= millis;
    }

updateCondition的实现很简单,拿当前主机的当前时间戳跟上一次的执行时间戳状态作对比:如果大于指定的间隔,则条件为真,触发写入。

    protected void resetParameters() {
        tupleList.clear();
        lastTime = System.currentTimeMillis();
    }

resetParameters实现是先清空tupleList,然后将lastTime老的时间戳状态覆盖为最新时间戳。

WriteFormat

一个写入格式的抽象类,提供了两种实现:

  • WriteFormatAsText : 以原样文本的形式写入指定路径的文件
  • WriteFormatAsCsv : 以csv格式写入指定文件

RichSinkFunction

RichSinkFunction通过继承AbstractRichFunction为实现一个rich SinkFunction提供基础(AbstractRichFunction提供了一个open/close方法对,以及获取运行时上下文对象手段)。RichSinkFunction也是抽象类,它有三个具体实现。

SocketClientSink

支持以socket的方式将数据发送到特定目标主机所在的服务器作为flink stream的sink。数据被序列化为byte array然后写入到socket。该sink支持失败重试模式的消息发送。该sink 可启用autoFlush,如果启用,那么会导致吞吐量显著下降,但延迟也会降低。该方法的构造器,提供的参数:

  • hostName : 待连接的server的host name
  • port : server的端口
  • schema :SerializationSchema的实例,用于序列化对象。
  • maxNumRetries : 最大重试次数(-1为无限重试)
  • autoflush : 是否自动flush

重试的策略在invoke方法中,当发送失败时进入到异常捕捉块中进行。

OutputFormatSinkFunction

一个将记录写入OutputFormat的SinkFunction的实现。

OutputFormat :定义被消费记录的输出接口。指定了最终的记录如何被存储,比如文件就是一种存储实现。

PrintSinkFunction

该实现用于将每条记录输出到标准输出流(stdOut)或标准错误流(stdErr)。在输出时,如果当前task的并行subtask实例个数大于1,也就是说当前task是并行执行的(同时存在多个实例),那么在输出每条记录之前会输出一个prefix前缀。prefix为在全局上下文中当前subtask的位置。

常见连接器中的Sink

Flink自身提供了一些针对第三方主流开源系统的连接器支持,它们有:

  • elasticsearch
  • flume
  • kafka(0.8/0.9版本)
  • nifi
  • rabbitmq
  • twitter

这些第三方系统(除了twitter)的sink,无一例外都是继承自RichSinkFunction

小结

这篇文章我们主要谈及了Flink的stream sink相关的设计、实现。当然这个主题还没有完全谈完,还会有后续篇幅继续解读。



原文发布时间为:2016-05-07


本文作者:vinoYang


本文来自云栖社区合作伙伴CSDN博客,了解相关信息可以关注CSDN博客。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
13天前
|
存储 消息中间件 Java
Apache Flink 实践问题之原生TM UI日志问题如何解决
Apache Flink 实践问题之原生TM UI日志问题如何解决
28 1
|
9天前
|
监控 网络协议 Java
Tomcat源码解析】整体架构组成及核心组件
Tomcat,原名Catalina,是一款优雅轻盈的Web服务器,自4.x版本起扩展了JSP、EL等功能,超越了单纯的Servlet容器范畴。Servlet是Sun公司为Java编程Web应用制定的规范,Tomcat作为Servlet容器,负责构建Request与Response对象,并执行业务逻辑。
Tomcat源码解析】整体架构组成及核心组件
|
11天前
|
消息中间件 监控 数据挖掘
基于RabbitMQ与Apache Flink构建实时分析系统
【8月更文第28天】本文将介绍如何利用RabbitMQ作为数据源,结合Apache Flink进行实时数据分析。我们将构建一个简单的实时分析系统,该系统能够接收来自不同来源的数据,对数据进行实时处理,并将结果输出到另一个队列或存储系统中。
54 2
|
13天前
|
消息中间件 分布式计算 Hadoop
Apache Flink 实践问题之Flume与Hadoop之间的物理墙问题如何解决
Apache Flink 实践问题之Flume与Hadoop之间的物理墙问题如何解决
28 3
|
13天前
|
消息中间件 运维 Kafka
Apache Flink 实践问题之达到网卡的最大速度如何解决
Apache Flink 实践问题之达到网卡的最大速度如何解决
32 2
|
14天前
|
消息中间件 前端开发 Kafka
【Azure 事件中心】使用Apache Flink 连接 Event Hubs 出错 Kafka error: No resolvable bootstrap urls
【Azure 事件中心】使用Apache Flink 连接 Event Hubs 出错 Kafka error: No resolvable bootstrap urls
|
13天前
|
SQL 运维 分布式计算
Apache Flink 实践问题之避免用户作业包中包含Flink的core包如何解决
Apache Flink 实践问题之避免用户作业包中包含Flink的core包如何解决
32 1
Apache Flink 实践问题之避免用户作业包中包含Flink的core包如何解决
|
13天前
|
数据采集 分布式计算 Kubernetes
Apache Flink 实践问题之ZooKeeper 网络瞬断时如何解决
Apache Flink 实践问题之ZooKeeper 网络瞬断时如何解决
34 4
|
8天前
|
Java 微服务 Spring
驾驭复杂性:Spring Cloud在微服务构建中的决胜法则
【8月更文挑战第31天】Spring Cloud是在Spring Framework基础上打造的微服务解决方案,提供服务发现、配置管理、消息路由等功能,适用于构建复杂的微服务架构。本文介绍如何利用Spring Cloud搭建微服务,包括Eureka服务发现、Config Server配置管理和Zuul API网关等组件的配置与使用。通过Spring Cloud,可实现快速开发、自动化配置,并提升系统的伸缩性和容错性,尽管仍需面对分布式事务等挑战,但其强大的社区支持有助于解决问题。
19 0
|
13天前
|
消息中间件 Java 数据处理
揭秘Apache Flink的Exactly-Once神技:如何在数据流海中确保每条信息精准无误,不丢不重?
【8月更文挑战第26天】Apache Flink 是一款先进的流处理框架,其核心特性 Exactly-Once 语义保证了数据处理的精准无误。尤其在金融及电商等高要求场景下,该特性极为关键。本文深入解析 Flink 如何实现 Exactly-Once 语义:通过状态管理确保中间结果可靠存储;利用一致的检查点机制定期保存状态快照;以及通过精确的状态恢复避免数据重复处理或丢失。最后,提供一个 Java 示例,展示如何计算用户访问次数,并确保 Exactly-Once 语义的应用。
35 0

推荐镜像

更多
下一篇
DDNS