SolrQuery挖掘--单维度聚合分析
本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介:
单维度聚合分析,主要解决类似以下场景的问题
(1)同一个用户搜索输入关键词
(2)某个时间段内搜索词排行榜
(3)某些关键词联合出现情况
(4)IP位置 维度下的关键词聚合情况
(5)其他任何参与搜索的单维度搜索请求统计
(6)平均命中率、hits=0、查询平均响应时间 ......
单维度聚合分析
为什么选择搜索引擎
单维度聚合分析应该是各种分析统计中最为简单、直接。 对于主动搜索、被动搜索一体的应用场景,有登录和无登陆等统一兼顾。并且提供接口服务,按需返回维度信息,并且可以复用。 无疑采取搜索引擎,依赖搜索引擎的facet统计功能,最为直接、快捷、有效、低沉本。前提是对搜索引擎比较熟悉,否则光一个 搜索引擎就折腾死人了。
单维度聚合分析意义
单维度分析意义主要在掌握数据属性、用户属性、热点发现。 例如:某个产品上某个用户一段时间搜索词聚合,然后对聚合词语义分析,将可以分析出该用户的某些历史偏好、行为特征、消费 倾向、社区角色等。 例如:一段时间内产品上用户在搜什么,那些是热点词,是否与运营活动相关,是否是产品的重点词范畴等。 例如:将关键词、时间、产品倒排起来,那么就可以知道任何时间段内,具体产品活跃的关键词分布,间接知晓产品的“语义集合” 例如:将关键词、用户、时间倒排起来,那么很容易知晓那些词偏女性、那些词偏男性、那些词中性,用户那个时候搜的多、是那些词 例如:将关键词、排序、翻页、命中倒排起来,那么很容易发现点击热点、超时分析等。 。。。。 太多了
陷阱
大家都关注结果去了,没有人喜欢过程,尤其是周期性、长期的过程。在淘宝上成交量、客单价为主题的大环境,任何和交易不相关 、任何不能直接影响交易、任何只是提升用户细微体验等等工作,都是一个“弱势”需求,甚至等于不是需求。 所以,技术即使实现,也不见得有人会关注、有人去用。KPI中不会因为用户体验而打分,KPI中不会因为改善排序效果而肯定。 因为本身这些不好评估效果,特别是短期内的效果。更本质的可能是这些“无关交易”!
单维度聚合关键问题
维度的选择
既然是单维度聚合,那么维度的选择就非常重要了。这个需要不是技术一方面说的算,更多的依赖业务。 而往往习惯了运营为主、人肉、经验为主的 淘宝居多业务,对交易之位的属性关注度明显的不在意。 也甚至出现,计算出来的结果会在 白名单、黑名单过滤下,面目全非。 通常基本的维度不可少:时间、业务、人、关键词等。也即时间、地点、人物、事件。
格式化
输入就是线上日志,输出就是格式化文档或者倒排索引结构。 在输入和输出之间就是转换。转换的过程其实非常麻烦的问题,只看一端只觉得问题很easy! 麻烦之处:
(1)提取规则
日志总是有许多莫名其妙的格式、内容、乱码。很难有一个100%的规则,满足所有请求日志。 即使有,也很难很容易的扩展到其他应用。例如solr 日志格式是有规律的,但是用户内容不一定有规律。 基于文本标签提取,自然会遇到内容的标签问题。提取完毕之后,schema结构具体应用是不一样的。
(2)提取速度
越精细越耗时,并且java String对象处理起来比较方便,却速度上远远低于char,而char处理不是很方便。 对应solr query log 还是建议采取char为主、StringBuidler为核心变量。
(3)适应性
一开始都是追求100%解析通过,实际总有那么一些内容,搅合常规处理方法。为了适应这些非常规的请求, 往往会将之前的处理规则打破或者添加更多条件,然后整体性能突然下降。建议:能处理的快速处理,不能处理的 单独输入到一个文本,对于这些非常规的特殊处理。
单维度聚合实现样例
对于终搜 solr 日志 输入 2012-08-09 14:50:33,396 INFO [org.apache.solr.core.SolrCore] - [search4product-0] webapp=null path=/select params={q=+supplier_id% 3A649289&sort=weight1+desc&rows=30&start=0&facet=true &facet.field=cat_path&hl.usePhraseHighlighter=false&echoParams=explicit&hl=true &hl.fl=title&hl.requireFieldMatch=true&hl.simple.pre=<em> &hl.simple.post=</em>&hl.snippets=3&hl.fragsize=2000&timeAllowed=2500} hits=1762 status=0 QTime=123 解码 2012-08-09 14:50:33,396 INFO [org.apache.solr.core.SolrCore] - [search4product-0] webapp=null path=/select params={q=+supplier_id:649289&sort=weight1 desc&rows=30&start=0&facet=true&facet.field=cat_path&hl.usePhraseHighlighter=false &echoParams=explicit&hl=true&hl.fl=title&hl.requireFieldMatch=true&hl.simple.pre=<em> &hl.simple.post=</em>&hl.snippets=3&hl.fragsize=2000&timeAllowed=2500} hits=1762 status=0 QTime=123
提取输出 2012-08-09T14:50:33Z#&search4product-0#&supplier_id:649289#&sort:weight1 desc#&hits:1762#&QTime:123 构建solr document
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。