从云到AI Teradata站在技术前沿赋能数据分析生态系统

简介:

“Edge”一词正越来越频繁的出现在各种大会的slogan中,不论翻译成前沿还是边界它代表的都是一种持续向前的精神。对于新技术而言它即极具吸引力又极具挑战,“The Edge of Next”不论是云还是AI都在为数据分析带来更多的面貌和可能。

“Teradata要做的就是利用最前沿的技术帮助企业来获得成功。”Teradata总裁兼CEO Victor Lund带来了一组收益风险坐标,帮助企业认识到如何平衡得到最佳收益。

从云到AI Teradata站在技术前沿赋能数据分析生态系统 

Teradata总裁兼CEO Victor Lund

其实随着企业业务的变化发展,企业都在或多或少的使用大数据分析让自己变得更加灵活、敏捷,以确保竞争优势。但分析这件事并不简单,因为业务的复杂性也造就了数据的多样性,这就意味着企业需要多种分析工具组合、异构分析环境来完成整体的数据管理和分析,甚至使用开源工具。

Teradata Everywhere从2016年的提出到现在已经成为Teradata的一个主要策略,混合云这一不可逆转的趋势已经在企业中不断的发酵。

Teradata执行副总裁兼首席产品官Oliver Ratzesberger看到现在90%的企业还部署在单一的环境下,80%的时间用在数据的操作上。

从云到AI Teradata站在技术前沿赋能数据分析生态系统

Teradata执行副总裁兼首席产品官Oliver Ratzesberger

所以今年Teradata又将Teradata Everywhere整合为四方面能力,任意数据分析、任意环境部署、任意方式购买、任意时间迁移,并且实现软件许可的可移植。

从云到AI Teradata站在技术前沿赋能数据分析生态系统

Teradata Everywhere

任意数据分析:依托Teradata分析平台,帮助企业各部门分析用户大规模运用首选分析工具与引擎分析多个数据源;
任意环境部署:在Teradata云、公有云、Teradata或商用硬件上本地部署环境等多种灵活的部署选项下提供分析处理能力;
任意方式购买:帮助企业针对特定用例,通过简化的附带定价策略、订阅式许可以及服务式选项,以更适合的方式购买软件;
任意时间迁移:充分利用软件许可可移植性,灵活转换部署选项运行分析,着眼未来做出购买决策;

在成本上,每100万次查询在领先公有云数据库上的成本是607000美金,Teradata分析平台只需要不到60美金。在时间上,原来9个月才能做到的事,Teradata现在10分钟就可以完成。

“很多企业都认为公有云会降低成本,其实并不能完全这样理解。”Teradata天睿公司国际集团执行副总裁Peter Mikkelse说,云服务和采用的平台有着很大的关系,所以资源的消耗也就不同。

西门子移动数据服务负责人Gerhard Kress也给出了对于Teradata Everywhere的两点看法,第一、作为全球化业务的西门子,像有些国家客观因素数据只能存储在本地,这对于整体数据分析是一个挑战;第二、西门子有着众多的分析模型,如何做到自动的同步到所有的环境中。

Teradata Everywhere在去年也来到中国,Teradata天睿公司大中华区首席执行官辛儿伦也看到中国的企业也很愿意接受这种模式,因为混合云已经成为很多客户的选择。

另外Teradata IntelliSphere也成为今年对Teradata Everywhere整体战略的补充,Teradata IntelliSphere是一个简单的基于订阅许可的软件组合,帮助企业运用所有核心软件获取、访问、部署、管理灵活的分析生态系统。

从云到AI Teradata站在技术前沿赋能数据分析生态系统

Teradata IntelliSphere

Teradata IntelliSphere由十大软件组件构成,包括:Teradata Listener、Teradata数据实验室、Teradata QueryGrid、Teradata Unity、Teradata混合云管理器、Teradata数据迁移器、多系统Viewpoint、Teradata数据流扩展程序、Teradata生态系统管理器、Teradata AppCenter。

原先使用每一个软件都需要购买一个许可,但现在Teradata IntelliSphere只需一个许可,就可以使用软件包中的多种软件,其和Teradata Everywhere一样通过TCore的积分方式进行转移为客户节省许可成本。

再来说说AI这个数据分析的一个新风向标,Teradata的AI调研显示,80%的企业正在投资AI,但34%的企业没有技巧实现,42%的企业没有基础设施,。受AI技术影响最大的行业包括IT、科技与电信业(59%)、商业与专业服务(43%)以及并列第三的客户服务与金融服务(各32%)。

投资回报率(ROI)一直被认为是AI发展伤的一大阻力,丹斯克银行(Danske Bank)与Teradata子公司Think Big Analytics推出了人工智能(AI)欺诈监测平台,通过对在线交易进行实时评分,为监测判别正确、错误和欺诈活动提供判别依据。预计在投入运营一年内就能实现100%的投资回报率。

目前中国银行在AI的应用上,则更多以机器人流程自动化(RPA)、聊天机器人(Charbot)、机器人投资顾问(Robo-advisor)为主。

“在数据分析上中国银行其实主要还在获客阶段,这和美国银行更多利用数据进行营销和风险管理有所差异。”依旧玉树临风、风流倜傥的老朋友富国银行企业模型风险部副总裁刘维政(Richard Liu)最近不仅忙里偷闲修葺家门前的草地,其实他在今年8月也抽空来了一趟中国和多家银行做了交流。

他提到现在每一个新技术出现都是那么光鲜亮丽,但是企业还是应该注重分析平台的建设,让效能和效率达到最优,这也是Teradata所希望的利用前沿技术赋能数据分析生态系统。


原文发布时间为:2017年10月25日

本文作者:王聪彬

本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。

相关文章
|
5天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用与前景
本文探讨了人工智能(AI)技术在医疗领域的应用,包括疾病诊断、治疗方案制定、药物研发等方面。通过对现有研究成果的梳理,分析了AI技术在提高医疗服务效率、降低医疗成本、改善患者体验等方面的潜力。同时,也指出了AI技术在医疗领域面临的挑战,如数据隐私保护、伦理道德问题等,并展望了未来的发展趋势。
24 2
|
6天前
|
机器学习/深度学习 人工智能 机器人
AI技术在医疗领域的应用及挑战
本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的定义和分类开始,然后详细介绍其在医疗领域的具体应用,如疾病诊断、药物研发等。最后,我们将讨论AI在医疗领域面临的挑战,包括数据隐私、伦理问题等。
|
7天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗健康领域中的多维度应用,从疾病诊断、个性化治疗到健康管理,展现了AI如何革新传统医疗模式。通过分析当前实践案例与最新研究成果,文章揭示了AI技术提升医疗服务效率、精准度及患者体验的巨大潜力,并展望了其在未来医疗体系中不可或缺的地位。 ####
|
14天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用####
本文探讨了人工智能(AI)技术在医疗领域的创新应用及其带来的革命性变化。通过分析AI在疾病诊断、个性化治疗、药物研发和患者管理等方面的具体案例,展示了AI如何提升医疗服务的效率和准确性。此外,文章还讨论了AI技术面临的挑战与伦理问题,并展望了未来的发展趋势。 ####
|
6天前
|
人工智能 Kubernetes Cloud Native
荣获2024年AI Cloud Native典型案例,阿里云容器产品技术能力获认可
2024全球数字经济大会云·AI·计算创新发展大会,阿里云容器服务团队携手客户,荣获“2024年AI Cloud Native典型案例”。
|
人工智能 达摩院 文字识别
医生的小助手,医疗AI赋能诊断新冠肺炎新方案!
阿里云视觉智能开放平台(vision.aliyun.com)携手达摩院联合出品图像分析处理类目下的 “新冠病毒肺炎辅助诊断”AI算法,它可以帮助医生快速进行疑似病例诊断,提高医生效率。
医生的小助手,医疗AI赋能诊断新冠肺炎新方案!
|
15天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
19天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。
|
4天前
|
机器学习/深度学习 人工智能 JSON
【实战干货】AI大模型工程应用于车联网场景的实战总结
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。