TMDB电影数据分析(上)

简介: TMDB电影数据分析(上)

TMDB电影数据分析(上)

     本文对源自Kaggle TMDB电影数据集进行分析影响电影票房的因素,数据分析流程包含数据集概分析、数据清洗、数据统计以及分析影响电影票房的因素。影响票房因素可能是电影预算、电影类型、电影时长、受欢迎程度、电影评分,发行时间等有关系,通过具体数据进行分析影响票房的因素。

数据集分析

     TDMB电影数据集包含大约 5000 部电影的相关数据。本次实验使用数据集中有关电影的数据表 tmdb_5000_movies.csv 进行数据分析。

     该数据集的下载地址是https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata

     首先导入本次实验需要的使用的四个Python工具库,分别是numpy、pandas、matplotlib、seaborn。

     接下来导入数据集,调用Pandas的read_csv()函数读取.csv类型的文件,以数据文件名’tmdb_5000_movies.csv’作为参数。read_csv函数生成一个DataFrame,而后赋值给movies变量。调用DataFrame的info()方法查看数据集的详细信息,包含数据行数、列数、列索引、每列数据的数据类型,数据存储等。在数据文件中,每一行数据是一条记录,每一列称为一个字段。

     输出结果如下:

     由结果可以看出,该数据集总共有20个字段,总共包含4803条记录,记录索引为0至4802。另外,统计了各个字段上非空值的数目及各个字段的数据类型,比如tagline字段非空值数目为3959,总数据量为4803,说明该字段含有空值。使用isnull()方法判断是否缺失,sum()方法统计缺失的数目。结果如下图所示。

     下面针对数据集各字段进行解释:

数据字段展示表

字段名 字段解释 备注
budget 预算 以美元为单位存储
genres 类型 记录电影类型、风格
homepage 主页 记录电影链接
id 电影标识号
keywords 关键字 用于描述电影
original_language 原声语言
original_title 原标题
overview 概览 电影简介
popularity 受欢迎度
production_companies 制片公司
production_countries 国家
release_date 发行日期
revenue 电影收入
runtime 电影时长
spoken_languages 语言
status 电影状态
tagline 宣传语
title 标题
vote_average 评分
vote_count 评分次数

显示详细信息

     下面调用DataFrame的describe()查看给定数据样本的基本统计信息,包含budget、id、popularity、revenue、runtime、vote_average、vote_count字段,对每个数值类型的字段统计个数、平均值、标准差、最小值、四分之一分位点(25%)、四分之二分位点(50%)、四分之三分位点(75%)以及最大值。

     上述结果表格中,budget、popularity、revenue、runtime、vote_average、vote_count列的最小值为0,对于budget、revenue、runtime中出现0是不符合常规的,认为这些是异常值,尤其revenue列25%处为0,说明revenue列中存在很多为0的值。

     查看budget字段为0的记录使用query()方法进行筛选数据,并使用head()方法查看前几行数据,默认是查看前5行数据,head(2)表示查看前2行数据。movies数据集一共有20个字段,下面的输出结果中只列出前面10个。在Jupyter Notebook页面上,拖动下端的水平滚动条可以看到后面10个字段的内容。

数据清洗

     经初步浏览数据集基本信息可以看出,数据集中存在缺失值现象,处理缺失值的常用方法有删除法、替换法、插入法。数据集中homepage、tagline字段中含有大量缺失值,考虑到这两个字段对不影响本次分析,可以直接删除这两个字段,同时删除其他与分析无关的字段。下面第一行代码调用DataFrame的drop()方法删除7个字段的数据,axis=1表示删除第二个维度上的数据,第二个维度代表列。参数inplace = True,表示直接将删除操作作用在数据集本身。第二行代码“movies.shape”查看数据集的行数和列数,返回一个元组,表示该数据集有4803条记录,每条记录有13个字段,也即行数是4803,列数是13。

     对于release_date、runtime这两个字段缺失值较少,可以使用指定数据进行手动填充缺失值,也可以直接删除含有缺失值的记录。

     删除含缺失值的记录(即一整行)的操作如下:

     数据集中可能存在某些记录重复,使用drop_duplicates()方法去掉重复记录,操作如下:

     keep参数为’first’,表示保留第一次出现的重复行,删除后面的重复行。

     另外,异常值存在对数据分析干扰很大,异常值过多,对分析结果产生不良影响,导致分析结果出现偏差甚至错误,统计各字段中异常值数目,操作如下:

     在数据量充足情况下,可以删除异常值所在记录,操作如下:

     上述代码调用movies.query()方法查找出budget、revenue字段中异常值所在记录并获取相应索引,使用drop()方法删除指定索引的记录后,数据集中样本数据还有3229条记录。再次查看数据集各字段基本统计信息,数据相对正常。

数据统计以及分析影响电影票房的因素

TMDB电影数据分析(下)https://developer.aliyun.com/article/1507629?spm=a2c6h.13148508.setting.14.1b484f0eD2AqhJ


相关文章
|
8月前
|
数据采集 存储 数据挖掘
TMDB电影数据分析(下)
TMDB电影数据分析(下)
|
5月前
|
存储 数据采集 数据可视化
基于Python flask+MySQL+echart的电影数据分析可视化系统
该博客文章介绍了一个基于Python Flask框架、MySQL数据库和ECharts库构建的电影数据分析可视化系统,系统功能包括猫眼电影数据的爬取、存储、展示以及电影评价词云图的生成。
261 1
|
5月前
|
数据采集 存储 数据可视化
基于Python flask的猫眼电影票房数据分析可视化系统,可以定制可视化
本文介绍了一个基于Python Flask框架开发的猫眼电影票房数据分析可视化系统,该系统集成了数据爬取、存储处理、可视化展示和用户交互功能,使用户能够直观地分析和展示电影票房数据,具有高度定制性。
185 0
基于Python flask的猫眼电影票房数据分析可视化系统,可以定制可视化
|
5月前
|
机器学习/深度学习 算法 数据可视化
基于Python flask的豆瓣电影数据分析可视化系统,功能多,LSTM算法+注意力机制实现情感分析,准确率高达85%
本文介绍了一个基于Python Flask框架的豆瓣电影数据分析可视化系统,该系统集成了LSTM算法和注意力机制进行情感分析,准确率高达85%,提供了多样化的数据分析和情感识别功能,旨在帮助用户深入理解电影市场和观众喜好。
179 0
|
6月前
|
JavaScript Java 测试技术
基于springboot+vue.js+uniapp的豆瓣电影数据分析可视化系统附带文章源码部署视频讲解等
基于springboot+vue.js+uniapp的豆瓣电影数据分析可视化系统附带文章源码部署视频讲解等
71 0
|
8月前
|
机器学习/深度学习 数据采集 数据可视化
R语言电影数据分析:随机森林探索电影受欢迎程度因素、参数调优可视化
R语言电影数据分析:随机森林探索电影受欢迎程度因素、参数调优可视化
|
5月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
99 2
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
273 4
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
115 4
数据分析的 10 个最佳 Python 库
|
5月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
107 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析