HTAP数据库 PostgreSQL 场景与性能测试之 25 - (OLTP) IN , EXISTS 查询

本文涉及的产品
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - IN , EXISTS 查询 (OLTP)

1、背景

in 查询,多用在多个输入值的匹配场景。

实际上PostgreSQL支持很多种多个输入值匹配的语法。

1、in (...)

2、in (table or subquery or srf)

3、= any (array)

4、exists (select 1 from (values (),(),...) as t(id) where x.?=t.id)

5、=? or =? or =? or .....

他们的执行计划分别如下,(in (values....) or = any (array)最佳) :

postgres=# explain select * from a where id in (1,2,3,4,5);  
                           QUERY PLAN                              
-----------------------------------------------------------------  
 Index Scan using a_pkey on a  (cost=0.43..9.46 rows=5 width=45)  
   Index Cond: (id = ANY ('{1,2,3,4,5}'::integer[]))  
(2 rows)  
  
postgres=# explain select * from a where id = any (array[1,2,3,4,5]);  
                           QUERY PLAN                              
-----------------------------------------------------------------  
 Index Scan using a_pkey on a  (cost=0.43..9.46 rows=5 width=45)  
   Index Cond: (id = ANY ('{1,2,3,4,5}'::integer[]))  
(2 rows)  
  
postgres=# explain select * from a where id = any (array(select generate_series(1,10)));  
                            QUERY PLAN                               
-------------------------------------------------------------------  
 Index Scan using a_pkey on a  (cost=5.45..22.74 rows=10 width=45)  
   Index Cond: (id = ANY ($0))  
   InitPlan 1 (returns $0)  
     ->  ProjectSet  (cost=0.00..5.02 rows=1000 width=4)  
           ->  Result  (cost=0.00..0.01 rows=1 width=0)  
(5 rows)  
  
postgres=# explain select * from a where id = any (array(select id from (values (1),(2),(3),(4),(5)) t (id)));  
                             QUERY PLAN                                
---------------------------------------------------------------------  
 Index Scan using a_pkey on a  (cost=0.50..17.79 rows=10 width=45)  
   Index Cond: (id = ANY ($0))  
   InitPlan 1 (returns $0)  
     ->  Values Scan on "*VALUES*"  (cost=0.00..0.06 rows=5 width=4)  
(4 rows)  
  
postgres=# explain select * from a where id in (select id from (values (1),(2),(3),(4),(5)) t (id));  
                               QUERY PLAN                                  
-------------------------------------------------------------------------  
 Nested Loop  (cost=0.51..14.39 rows=5 width=45)  
   ->  HashAggregate  (cost=0.07..0.12 rows=5 width=4)  
         Group Key: "*VALUES*".column1  
         ->  Values Scan on "*VALUES*"  (cost=0.00..0.06 rows=5 width=4)  
   ->  Index Scan using a_pkey on a  (cost=0.43..2.85 rows=1 width=45)  
         Index Cond: (id = "*VALUES*".column1)  
(6 rows)  
  
postgres=# explain select * from a where exists (select 1 from (values (1),(2),(3),(4),(5)) t (id) where t.id=a.id);  
                               QUERY PLAN                                  
-------------------------------------------------------------------------  
 Nested Loop  (cost=0.51..14.39 rows=5 width=45)  
   ->  HashAggregate  (cost=0.07..0.12 rows=5 width=4)  
         Group Key: "*VALUES*".column1  
         ->  Values Scan on "*VALUES*"  (cost=0.00..0.06 rows=5 width=4)  
   ->  Index Scan using a_pkey on a  (cost=0.43..2.85 rows=1 width=45)  
         Index Cond: (id = "*VALUES*".column1)  
(6 rows)  
  
postgres=# explain select * from a where id=1 or id=2 or id=3 or id=4 or id =5;  
                                 QUERY PLAN                                   
----------------------------------------------------------------------------  
 Bitmap Heap Scan on a  (cost=8.22..14.32 rows=5 width=45)  
   Recheck Cond: ((id = 1) OR (id = 2) OR (id = 3) OR (id = 4) OR (id = 5))  
   ->  BitmapOr  (cost=8.22..8.22 rows=5 width=0)  
         ->  Bitmap Index Scan on a_pkey  (cost=0.00..1.64 rows=1 width=0)  
               Index Cond: (id = 1)  
         ->  Bitmap Index Scan on a_pkey  (cost=0.00..1.64 rows=1 width=0)  
               Index Cond: (id = 2)  
         ->  Bitmap Index Scan on a_pkey  (cost=0.00..1.64 rows=1 width=0)  
               Index Cond: (id = 3)  
         ->  Bitmap Index Scan on a_pkey  (cost=0.00..1.64 rows=1 width=0)  
               Index Cond: (id = 4)  
         ->  Bitmap Index Scan on a_pkey  (cost=0.00..1.64 rows=1 width=0)  
               Index Cond: (id = 5)  
(13 rows)  

2、设计

1亿记录,查询匹配多个输入值的性能。分别输入1,10,100,1000,10000,100000,1000000个值作为匹配条件。

1、in (...)

2、in (table or subquery or srf)

3、= any (array)

4、exists (select 1 from (values (),(),...) as t(id) where x.?=t.id)

5、=? or =? or =? or .....

3、准备测试表

create table t_in_test (id int primary key, info text, crt_time timestamp);  

4、准备测试函数(可选)

5、准备测试数据

insert into t_in_test select generate_series(1,100000000), md5(random()::text), clock_timestamp();  

6、准备测试脚本

1、in (...)

1,10,100,1000,10000,100000,1000000 个输入值的测试性能

do language plpgsql $$  
declare  
  arr text;  
  ts timestamp := clock_timestamp();  
  mx int8;  
begin  
  for i in 0..6 loop  
    mx := (1*(10^i))::int8;  
    select string_agg((random()*100000)::int::text, ',') into arr from generate_series(1, mx);  
    ts := clock_timestamp();  
    execute 'select * from t_in_test where id in ('||arr||')';  
    raise notice '%: %', mx, clock_timestamp()-ts;  
  end loop;  
end;  
$$ ;  

2、in (table or subquery or srf)

1,10,100,1000,10000,100000,1000000 个输入值的测试性能

do language plpgsql $$  
declare  
  arr text;  
  ts timestamp := clock_timestamp();  
  mx int8;  
begin  
  for i in 0..6 loop  
    mx := (1*(10^i))::int8;  
    ts := clock_timestamp();  
    perform * from t_in_test where id in ( select (random()*100000)::int from generate_series(1, mx) );  
    raise notice '%: %', mx, clock_timestamp()-ts;  
  end loop;  
end;  
$$ ;  

3、= any (array)

1,10,100,1000,10000,100000,1000000 个输入值的测试性能

do language plpgsql $$  
declare  
  arr int[];  
  ts timestamp := clock_timestamp();  
  mx int8;  
begin  
  for i in 0..6 loop  
    mx := (1*(10^i))::int8;  
    select array_agg((random()*100000)::int) into arr from generate_series(1, mx);  
    ts := clock_timestamp();  
    perform * from t_in_test where id = any ( arr );  
    raise notice '%: %', mx, clock_timestamp()-ts;  
  end loop;  
end;  
$$ ;  

4、exists (select 1 from (values (),(),...) as t(id) where x.?=t.id)

1,10,100,1000,10000,100000,1000000 个输入值的测试性能

do language plpgsql $$  
declare  
  ts timestamp := clock_timestamp();  
  mx int8;  
begin  
  for i in 0..6 loop  
    mx := (1*(10^i))::int8;  
    ts := clock_timestamp();  
    perform * from t_in_test where exists ( select 1 from ( select (random()*100000)::int id from generate_series(1,mx) ) t where t_in_test.id=t.id );  
    raise notice '%: %', mx, clock_timestamp()-ts;  
  end loop;  
end;  
$$ ;  

5、压测

匹配1 ~ 100个输入值,求聚合。高并发。

vi test.sql  
  
\set x random(1,100)  
select count(*) from t_in_test where id = any(array(select (random()*100000000)::int from generate_series(1,:x)));  

压测

CONNECTS=56    
TIMES=300    
export PGHOST=$PGDATA    
export PGPORT=1999    
export PGUSER=postgres    
export PGPASSWORD=postgres    
export PGDATABASE=postgres    
    
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES    

7、测试

1、in (...)

1,10,100,1000,10000,100000,1000000 个输入值的测试性能

do language plpgsql $$  
declare  
  arr text;  
  ts timestamp := clock_timestamp();  
  mx int8;  
begin  
  for i in 0..6 loop  
    mx := (1*(10^i))::int8;  
    select string_agg((random()*100000)::int::text, ',') into arr from generate_series(1, mx);  
    ts := clock_timestamp();  
    execute 'select * from t_in_test where id in ('||arr||')';  
    raise notice '%: %', mx, clock_timestamp()-ts;  
  end loop;  
end;  
$$ ;  
NOTICE:  1: 00:00:00.000256  
NOTICE:  10: 00:00:00.000173  
NOTICE:  100: 00:00:00.000772  
NOTICE:  1000: 00:00:00.004445  
NOTICE:  10000: 00:00:00.024073  
NOTICE:  100000: 00:00:00.195439  
NOTICE:  1000000: 00:00:01.638982  
DO  

2、in (table or subquery or srf)

1,10,100,1000,10000,100000,1000000 个输入值的测试性能

do language plpgsql $$  
declare  
  arr text;  
  ts timestamp := clock_timestamp();  
  mx int8;  
begin  
  for i in 0..6 loop  
    mx := (1*(10^i))::int8;  
    ts := clock_timestamp();  
    perform * from t_in_test where id in ( select (random()*100000)::int from generate_series(1, mx) );  
    raise notice '%: %', mx, clock_timestamp()-ts;  
  end loop;  
end;  
$$ ;  
NOTICE:  1: 00:00:00.00044  
NOTICE:  10: 00:00:00.000244  
NOTICE:  100: 00:00:00.000788  
NOTICE:  1000: 00:00:00.004455  
NOTICE:  10000: 00:00:00.028793  
NOTICE:  100000: 00:00:00.187841  
NOTICE:  1000000: 00:00:00.583744  
DO  

3、= any (array)

1,10,100,1000,10000,100000,1000000 个输入值的测试性能

do language plpgsql $$  
declare  
  arr int[];  
  ts timestamp := clock_timestamp();  
  mx int8;  
begin  
  for i in 0..6 loop  
    mx := (1*(10^i))::int8;  
    select array_agg((random()*100000)::int) into arr from generate_series(1, mx);  
    ts := clock_timestamp();  
    perform * from t_in_test where id = any ( arr );  
    raise notice '%: %', mx, clock_timestamp()-ts;  
  end loop;  
end;  
$$ ;  
NOTICE:  1: 00:00:00.000216  
NOTICE:  10: 00:00:00.000151  
NOTICE:  100: 00:00:00.000654  
NOTICE:  1000: 00:00:00.00399  
NOTICE:  10000: 00:00:00.021216  
NOTICE:  100000: 00:00:00.106335  
NOTICE:  1000000: 00:00:00.386113  
DO  

4、exists (select 1 from (values (),(),...) as t(id) where x.?=t.id)

1,10,100,1000,10000,100000,1000000 个输入值的测试性能

do language plpgsql $$  
declare  
  ts timestamp := clock_timestamp();  
  mx int8;  
begin  
  for i in 0..6 loop  
    mx := (1*(10^i))::int8;  
    ts := clock_timestamp();  
    perform * from t_in_test where exists ( select 1 from ( select (random()*100000)::int id from generate_series(1,mx) ) t where t_in_test.id=t.id );  
    raise notice '%: %', mx, clock_timestamp()-ts;  
  end loop;  
end;  
$$ ;  
NOTICE:  1: 00:00:00.000458
NOTICE:  10: 00:00:00.000224
NOTICE:  100: 00:00:00.000687
NOTICE:  1000: 00:00:00.003916
NOTICE:  10000: 00:00:00.02734
NOTICE:  100000: 00:00:00.187671
NOTICE:  1000000: 00:00:00.570389
DO

5、匹配1 ~ 100个输入值,求聚合。高并发。

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 56  
number of threads: 56  
duration: 300 s  
number of transactions actually processed: 13913566  
latency average = 1.207 ms  
latency stddev = 0.840 ms  
tps = 46378.142149 (including connections establishing)  
tps = 46384.723274 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set x random(1,100)  
         1.207  select count(*) from t_in_test where id = any(array(select (random()*100000000)::int from generate_series(1,:x)));  

TPS: 46384

5、匹配1 ~ 100个输入值,求聚合。高并发。

平均响应时间: 1.207 毫秒

5、匹配1 ~ 100个输入值,求聚合。高并发。

1到100万个输入值的响应时间

1亿条记录,匹配100万个输入值( = any (array) ),只需要386毫秒。

NOTICE:  1: 00:00:00.000216  
NOTICE:  10: 00:00:00.000151  
NOTICE:  100: 00:00:00.000654  
NOTICE:  1000: 00:00:00.00399  
NOTICE:  10000: 00:00:00.021216  
NOTICE:  100000: 00:00:00.106335  
NOTICE:  1000000: 00:00:00.386113  

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
4月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
933 152
|
4月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎,提供高性价比、稳定安全的云数据库服务,适用于多种行业与业务场景。
776 156
|
4月前
|
关系型数据库 MySQL 分布式数据库
阿里云PolarDB云原生数据库收费价格:MySQL和PostgreSQL详细介绍
阿里云PolarDB兼容MySQL、PostgreSQL及Oracle语法,支持集中式与分布式架构。标准版2核4G年费1116元起,企业版最高性能达4核16G,支持HTAP与多级高可用,广泛应用于金融、政务、互联网等领域,TCO成本降低50%。
|
4月前
|
关系型数据库 分布式数据库 数据库
阿里云数据库收费价格:MySQL、PostgreSQL、SQL Server和MariaDB引擎费用整理
阿里云数据库提供多种类型,包括关系型与NoSQL,主流如PolarDB、RDS MySQL/PostgreSQL、Redis等。价格低至21元/月起,支持按需付费与优惠套餐,适用于各类应用场景。
|
7月前
|
SQL 关系型数据库 MySQL
Go语言数据库编程:使用 `database/sql` 与 MySQL/PostgreSQL
Go语言通过`database/sql`标准库提供统一数据库操作接口,支持MySQL、PostgreSQL等多种数据库。本文介绍了驱动安装、连接数据库、基本增删改查操作、预处理语句、事务处理及错误管理等内容,涵盖实际开发中常用的技巧与注意事项,适合快速掌握Go语言数据库编程基础。
585 62
|
5月前
|
存储 关系型数据库 数据库
【赵渝强老师】PostgreSQL数据库的WAL日志与数据写入的过程
PostgreSQL中的WAL(预写日志)是保证数据完整性的关键技术。在数据修改前,系统会先将日志写入WAL,确保宕机时可通过日志恢复数据。它减少了磁盘I/O,提升了性能,并支持手动切换日志文件。WAL文件默认存储在pg_wal目录下,采用16进制命名规则。此外,PostgreSQL提供pg_waldump工具解析日志内容。
552 0
|
7月前
|
存储 关系型数据库 分布式数据库
【赵渝强老师】基于PostgreSQL的分布式数据库:Citus
Citus 是基于 PostgreSQL 的开源分布式数据库,采用 shared nothing 架构,具备良好的扩展性。它以插件形式集成,部署简单,适用于处理大规模数据和高并发场景。本文介绍了 Citus 的基础概念、安装配置步骤及其在单机环境下的集群搭建方法。
684 2
|
7月前
|
存储 关系型数据库 测试技术
拯救海量数据:PostgreSQL分区表性能优化实战手册(附压测对比)
本文深入解析PostgreSQL分区表的核心原理与优化策略,涵盖性能痛点、实战案例及压测对比。首先阐述分区表作为继承表+路由规则的逻辑封装,分析分区裁剪失效、全局索引膨胀和VACUUM堆积三大性能杀手,并通过电商订单表崩溃事件说明旧分区维护的重要性。接着提出四维设计法优化分区策略,包括时间范围分区黄金法则与自动化维护体系。同时对比局部索引与全局索引性能,展示后者在特定场景下的优势。进一步探讨并行查询优化、冷热数据分层存储及故障复盘,解决分区锁竞争问题。
992 2
|
关系型数据库 分布式数据库 PolarDB
《阿里云产品手册2022-2023 版》——PolarDB for PostgreSQL
《阿里云产品手册2022-2023 版》——PolarDB for PostgreSQL
582 0
|
存储 缓存 关系型数据库

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版