spark-TopK算法

简介: Case: 输入:文本文件 输出: (158,) (28,the) (19,to) (18,Spark) (17,and) (11,Hadoop) (10,##) (8,you) (8,with) (8,for)算法: 首先实现wordcount,topk实现是以wordcount为基础,在分词统计完成后交换key/value,然后调用sortByKey进行排序。
  • Case:
    输入:文本文件
    输出:
    (158,)
    (28,the)
    (19,to)
    (18,Spark)
    (17,and)
    (11,Hadoop)
    (10,##)
    (8,you)
    (8,with)
    (8,for)
  • 算法:
    首先实现wordcount,topk实现是以wordcount为基础,在分词统计完成后交换key/value,然后调用sortByKey进行排序。
  • java
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;

import java.io.Serializable;
import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
import java.util.regex.Pattern;


public class TopK {
    public static final Pattern SPACE = Pattern.compile(" ");

    public static void main(String[] args)throws Exception {
        String inPath = null;

        if (args.length == 1) {
            inPath = args[0];
        } else {
            System.out.println("Usage: <src> [des]");
        }

        SparkConf sparkConf = new SparkConf().setAppName("Word Count");
        JavaSparkContext jsc = new JavaSparkContext(sparkConf);
        JavaRDD<String> lines = jsc.textFile(inPath);
        JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterable<String> call(String s) throws Exception {
                return Arrays.asList(SPACE.split(s));
            }
        });

        JavaPairRDD<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(String s) throws Exception {
                return new Tuple2<String, Integer>(s, 1);
            }
        });

        JavaPairRDD<String, Integer> counts = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer i1 , Integer i2) throws Exception {
                return i1 + i2;
            }
        });

        JavaPairRDD<Integer, String> converted = counts.mapToPair(new PairFunction<Tuple2<String, Integer>, Integer, String>() {
            @Override
            public Tuple2<Integer, String> call(Tuple2<String, Integer> tuple) throws Exception {
                return new Tuple2<Integer, String>(tuple._2(), tuple._1());
            }
        });

        JavaPairRDD<Integer, String> sorted = converted.sortByKey(true, 1);
        List<Tuple2<Integer, String>> topK = sorted.top(5, new Comp());

        for(Tuple2<Integer, String> top: topK) {
            System.out.println(top._2() + ": " + top._1());
        }

        jsc.stop();
    }
}

class Comp implements Comparator<Tuple2<Integer, String>>, Serializable {

    @Override
    public int compare(Tuple2<Integer, String> o1, Tuple2<Integer, String> o2) {
        if(o1._1() < o2._1()) {
            return -1;
        }else if(o1._1() > o2._1()) {
            return 1;
        }else {
            return 0;
        }
    }
}
  • scala

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._


object TopK {
  def main(args: Array[String]) {
    if (args.length != 2) {
      System.out.println("Usage: <src> <num>")
      System.exit(1)
    }

    val conf = new SparkConf().setAppName("TopK")
    val sc = new SparkContext(conf)

    val lines = sc.textFile(args(0))
    val ones = lines.flatMap(_.split(" ")).map(word => (word, 1))
    val count = ones.reduceByKey((a, b) => a + b)
    val convert = count.map {
      case (key, value) => (value, key)
    }.sortByKey(true, 1)
    convert.top(args(1).toInt).foreach(a => System.out.println("(" + a._2 + "," + a._1 + ")"))
}
  • 应用场景:
    TopK模型常用于分析消费者热门消费分析、网站/博客点击量、用户浏览量分析,最新热词及热门搜索等的分析处理
目录
相关文章
|
机器学习/深度学习 分布式计算 算法
Spark中的机器学习库MLlib是什么?请解释其作用和常用算法。
Spark中的机器学习库MLlib是什么?请解释其作用和常用算法。
312 0
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
204 0
|
11月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
分布式计算 算法 大数据
大数据Spark MLlib推荐算法
大数据Spark MLlib推荐算法
479 0
|
分布式计算 算法 Java
ALS算法 java spark rdd简单实现
ALS算法 java spark rdd简单实现
183 0
|
分布式计算 算法 搜索推荐
Java编写的Spark ALS协同过滤推荐算法的源代码能共享一下
Java编写的Spark ALS协同过滤推荐算法的源代码能共享一下
181 0
|
存储 分布式计算 搜索推荐
【Spark MLlib】(六)协同过滤 (Collaborative Filtering) 算法分析
【Spark MLlib】(六)协同过滤 (Collaborative Filtering) 算法分析
541 0
【Spark MLlib】(六)协同过滤 (Collaborative Filtering) 算法分析
|
分布式计算 算法 搜索推荐
Spark实现协同过滤CF算法实践
UI矩阵–>II矩阵–>排序
257 0
Spark实现协同过滤CF算法实践
|
机器学习/深度学习 分布式计算 算法
基于Spark的机器学习实践 (九) - 聚类算法
基于Spark的机器学习实践 (九) - 聚类算法
182 0
|
机器学习/深度学习 SQL 存储
基于Spark的机器学习实践 (八) - 分类算法
基于Spark的机器学习实践 (八) - 分类算法
425 0

热门文章

最新文章