【业界首例】MIT新算法骗过神经网络3D物体分类,成功率超90%

简介: 在这篇论文中,作者秒速了他们如何在2D和3D情况下生成具有可迁移性的对抗样本。此外,他们还展示了,使用新方法在物理世界中合成和制作这种稳定的3D对抗样本,包括具有复杂形状的物体:在实验中,无论视点、噪声和其他类似的现实世界因素如何,这些对抗样本都保持其攻击性。

在这篇论文中,作者秒速了他们如何在2D和3D情况下生成具有可迁移性的对抗样本。此外,他们还展示了,使用新方法在物理世界中合成和制作这种稳定的3D对抗样本,包括具有复杂形状的物体:在实验中,无论视点、噪声和其他类似的现实世界因素如何,这些对抗样本都保持其攻击性。

为了表示他们的过程适用于任意3D模型,研究人员还做了一个棒球,无论从什么角度看,受攻击的分类器都将这只棒球分类为浓缩咖啡。
当研究人员把乌龟和棒球放到语义相关的背景下(比如在水里,或者放在棒球手套中),神经网络仍然无法正确分类(一般而言,步枪不会出现在水下,棒球手套里也极少会有浓缩咖啡)。

1

但是,使用标准技术生成的对抗样本,迁移到现实世界中就不管用了,因为数据总会受变焦、相机噪声和其他的影响。例如下面,还是一样的图像,但稍微经过一些旋转,就被正确分类为虎斑猫。

2

自从发现对抗样本缺乏可迁移性这一特点,很多工作就认为,使用对抗样本进行现实世界攻击的成功可能性很低。而下面要介绍的这项工作表明,对抗样本对现实世界的影响,可能比以前想的更为严重。

合成鲁棒的对抗样本,进行稳定的现实世界攻击

MIT和LabSix的研究人员合作,提出了一种合成对抗样本的通用(general-purpose)算法。这种算法生成的对抗样本,在模糊、旋转、缩放、光照等变换下,能够可靠地攻击神经网络分类器,导致目标被错误分类。作者在论文《Synthesizing robust adversarial examples》中写道,“我们提出的方法构建的3D物体,能够在各种角度和视角分布上始终愚弄神经网络,这在业界尚属首次。”

在实验中,研究人员3D打印了一只乌龟,在新的鲁棒合成对抗样本攻击下,在每个角度,谷歌InceptionV3图像分类器都把这只乌龟分类为“步枪”,而不受干扰的乌龟一直被归类为“乌龟”。


3

在这篇论文中,作者秒速了他们如何在2D和3D情况下生成具有可迁移性的对抗样本。此外,他们还展示了,使用新方法在物理世界中合成和制作这种稳定的3D对抗样本,包括具有复杂形状的物体:在实验中,无论视点、噪声和其他类似的现实世界因素如何,这些对抗样本都保持其攻击性。

为了表示他们的过程适用于任意3D模型,研究人员还做了一个棒球,无论从什么角度看,受攻击的分类器都将这只棒球分类为浓缩咖啡。

当研究人员把乌龟和棒球放到语义相关的背景下(比如在水里,或者放在棒球手套中),神经网络仍然无法正确分类(一般而言,步枪不会出现在水下,棒球手套里也极少会有浓缩咖啡)。


4


新算法EOT:生成鲁棒的对抗样本

这种算法名为EOT(Expectation over Transformation),作者在论文中介绍,ETO算法“关键在于在优化过程中对干扰建模。具体说,不是对一个单一样本的对数似然优化,而是选择形变函数t的分布T做优化”。

简单说,这种算法拿到对抗性样本后,会模拟这个物体从各种角度和距离看上去的结果,然后将所有这些潜在的图像组合成一个单一的模式。


5

但是,这种方法也有局限——攻击者必须了解目标算法的内部运作。相比之下,以往的对抗攻击可以做到黑箱攻击。

作者在结论中写道,这项工作表明,对抗性样本对基于神经网络的图像分类器构成了实际的威胁。“通过引入EOT,并在EOT框架内进行3D建模渲染和3D打印,我们成功地打印出3D物体,在各种角度、视点和照明条件下,让标准的ImageNet分类器将物体分类为目标类别。”

如果我们不设法找到防御方法,系统总有一天会遭受攻击。论文作者、参与这项研究的Anish Athalye在接受QZ采访时表示,现在有很多使用机器学习的欺诈检测系统,如果能故意修改输入,让系统无法检测出欺诈交易,那么就可能造成财务损失。

原文发布时间为:2017-11-3
本文作者:费欣欣
本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”微信公众号
原文链接:【业界首例】MIT新算法骗过神经网络3D物体分类,成功率超90%

相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
111 55
|
15天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
93 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
14天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
98 30
|
1天前
|
JSON 算法 Java
Nettyの网络聊天室&扩展序列化算法
通过本文的介绍,我们详细讲解了如何使用Netty构建一个简单的网络聊天室,并扩展序列化算法以提高数据传输效率。Netty的高性能和灵活性使其成为实现各种网络应用的理想选择。希望本文能帮助您更好地理解和使用Netty进行网络编程。
21 12
|
21天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
8天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
28天前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
29天前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络