Neurons字幕组 | 2分钟看AI通过2D照片设计出面部3D模型(附论文下载)

简介: 来吧,和Neurons一起,玩点不一样的AI! 还记得童年的哆啦A梦系列为我们带来的神奇工具“六面相机”吗?当你拍摄物体的时候,获得的不只是物体在一个角度上二维平面的投影,而是6个不同角度的照片。虽然看上去特别不可思议,但仍然限于二维平面的图像。


1

来吧,和Neurons一起,玩点不一样的AI!
还记得童年的哆啦A梦系列为我们带来的神奇工具“六面相机”吗?当你拍摄物体的时候,获得的不只是物体在一个角度上二维平面的投影,而是6个不同角度的照片。虽然看上去特别不可思议,但仍然限于二维平面的图像。今天的Neurons小视频要介绍的,则是更甚一步的黑科技,用深度神经网络,将二维的人像照片立体化,生成面部的三维模型。
想象一下,如果我们能把代表自己的3D人物放进数字电影或者电脑游戏里是多么炫酷!本期的视频就介绍了通过一张简单的照片生成我们面部3D模型的方法。当然,将我们面部的3D几何模型和反照率分布图数字化显然是件极其费时费力的任务。(反照率图指的就是纹理,即一张彩图。它可以描述我们的皮肤是如何反射和吸收光线的)。

3
从左至右依次是:输入图像、输出反照率图像


4
从左至右依次是:渲染、渲染(局部放大)


5
从左至右依次是:渲染、渲染(局部放大)

显然,捕捉这样一幅图像需要很长时间,而且成本很高。所以,我们开发了这样一种黑科技,这项技术可以用一张简单的照片,生成任何一张脸的全数字化图像。我们甚至可以在数字世界中重现历史人物,而我们需要的,仅仅是一张照片。

6
从左至右依次是:输入2D图像、输出3D面部纹理图像(穆罕默德 阿里)

拿到一张照片后,这项技术能够生成两张反照率分布图:其中一张是图像完整的低频图,它可以记录下整个面部,但只包含大致细节;而另一张图则包含更多的细节,但它却不完整。大家还记得纹理合成的方法吗?输入非常小的一块具有重复结构的图像,在得知这些结构的统计特性后,就可能让它们无限地继续下去。于是,我们就可以以这张不完整的反照图为基础,尽可能地把缺失的细节合成出来!这篇论文Photorealistic Facial Texture Inference Using Deep Neural Networks的作者借助一种经典的机器学习算法,即卷积神经网络实现了这一点。我们所用的神经网络越深层,就有越多的高频细节出现在输出结果当中,即我们得到的图像就会越清晰。

7
从左至右分别是逐层叠加五层后形成的愈加清晰的面部效果图

在这篇论文中,你还能看到一份关于使用者研究的详细描述。这份研究是通过众人协作的方式进行的,旨在验证这项技术,包括用户界面和被问到的问题,还有一些与PatchMatch算法的比较。PatchMatch算法是纹理合成领域里程碑式的技术,也被用来修补那些年代久远的名古画。

8
从左至右依次是:输入、反照率图像、用PatchMatch算法后、最终效果图

看了今天的Neurons小视频,有没有大开眼界呢?通过深度神经网络,AI真正帮我们实现了“脑补”,构建出了人脸虚拟的3D模型,虽然这篇文章里的数据只是应用在人脸的照片上,但是对于其他物体和图像,发展出广阔的应用前景也是指日可待的!
原文发布时间为:2017-10-30
本文作者:Neurons字幕组
本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”微信公众号

相关文章
|
28天前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
77 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
107 2
|
20天前
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
39 4
|
29天前
|
人工智能 自然语言处理
从迷茫到精通:揭秘模型微调如何助你轻松驾驭AI新热点,解锁预训练模型的无限潜能!
【10月更文挑战第13天】本文通过简单的问题解答形式,结合示例代码,详细介绍了模型微调的全流程。从选择预训练模型、准备新任务数据集、设置微调参数,到进行微调训练和评估调优,帮助读者全面理解模型微调的技术细节和应用场景。
67 6
|
1月前
|
人工智能 自然语言处理 安全
【通义】AI视界|Adobe推出文生视频AI模型,迎战OpenAI和Meta
本文精选了过去24小时内的重要科技新闻,包括微软人工智能副总裁跳槽至OpenAI、Adobe推出文本生成视频的AI模型、Meta取消高端头显转而开发超轻量设备、谷歌与核能公司合作为数据中心供电,以及英伟达股价创下新高,市值接近3.4万亿美元。这些动态展示了科技行业的快速发展和激烈竞争。点击链接或扫描二维码获取更多资讯。
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
解锁AI潜力:让开源模型在私有环境绽放——手把手教你搭建专属智能服务,保障数据安全与性能优化的秘密攻略
【10月更文挑战第8天】本文介绍了如何将开源的机器学习模型(如TensorFlow下的MobileNet)进行私有化部署,包括环境准备、模型获取与转换、启动TensorFlow Serving服务及验证部署效果等步骤,适用于希望保护用户数据并优化服务性能的企业。
50 4
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
揭开模型微调Fine-Tuning的神秘面纱:如何在预训练基础上巧妙调整,解锁定制AI解决方案的秘密武器
【10月更文挑战第8天】模型微调是在预训练模型基础上,利用特定领域数据进一步训练,以优化模型在特定任务上的表现。此方法广泛应用于自然语言处理和计算机视觉等领域,通过调整预训练模型的部分或全部参数,结合适当的正则化手段,有效提升模型性能。例如,使用Hugging Face的Transformers库对BERT模型进行微调,以改善文本匹配任务的准确率。
54 1
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
28 1
|
6天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
32 10