揭开模型微调Fine-Tuning的神秘面纱:如何在预训练基础上巧妙调整,解锁定制AI解决方案的秘密武器

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: 【10月更文挑战第8天】模型微调是在预训练模型基础上,利用特定领域数据进一步训练,以优化模型在特定任务上的表现。此方法广泛应用于自然语言处理和计算机视觉等领域,通过调整预训练模型的部分或全部参数,结合适当的正则化手段,有效提升模型性能。例如,使用Hugging Face的Transformers库对BERT模型进行微调,以改善文本匹配任务的准确率。

模型微调Fine-Tuning是一种在现有预训练模型基础上进行调整的技术,以适应特定任务的需求。这种方法广泛应用于自然语言处理、计算机视觉等领域,其核心思想是在大量通用数据上训练出的基础模型之上,利用少量特定领域的数据进行进一步训练,从而提升模型在目标任务上的表现。

预训练模型通常是在大规模数据集上训练得到的,这些数据集往往包含了丰富多样的信息,使得模型能够学到较为泛化的特征表示。然而,这样的模型虽然具备了一定的泛化能力,但在特定应用场景下,可能无法完全满足特定任务的需求。这时,通过收集相关领域的少量标注数据,对预训练模型进行微调,就可以有效提升模型的性能。

要进行模型微调,首先需要一个预训练模型作为起点。以自然语言处理中的BERT模型为例,该模型基于Transformer架构,经过大量的文本数据训练后,能够很好地理解自然语言的上下文关系。下面是一个使用Hugging Face的Transformers库进行微调的例子:

from transformers import BertForSequenceClassification, BertTokenizer, Trainer, TrainingArguments
from datasets import load_dataset

# 加载预训练模型和tokenizer
model_name = 'bert-base-uncased'
model = BertForSequenceClassification.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)

# 准备数据集
dataset = load_dataset('glue', 'mrpc')  # MRPC是一个文本匹配的数据集

# 数据预处理
def tokenize_function(examples):
    return tokenizer(examples['sentence1'], examples['sentence2'], truncation=True, padding='max_length')

tokenized_datasets = dataset.map(tokenize_function, batched=True)

# 定义训练参数
training_args = TrainingArguments(
    output_dir='./results',
    evaluation_strategy='epoch',
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    num_train_epochs=3,
    weight_decay=0.01,
)

# 创建Trainer对象
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets['train'],
    eval_dataset=tokenized_datasets['validation'],
)

# 开始训练
trainer.train()

在这个例子中,我们选择了BERT模型,并使用GLUE数据集中MRPC子集进行微调。该任务涉及判断两个句子之间的语义关系,即是否意思相同。通过定义训练参数和创建训练器,最终实现了模型的微调。

值得注意的是,模型微调过程中,调整哪些层、冻结哪些层、学习率的选择等都是影响最终效果的关键因素。通常情况下,我们会选择解冻部分甚至全部可训练参数,同时使用较小的学习率来防止过拟合,并且可能会使用权重衰减等正则化手段来提高模型的泛化能力。

除了上述提到的自然语言处理任务外,模型微调同样适用于图像识别等领域。例如,在计算机视觉中,可以使用ResNet这样的预训练模型,然后针对特定的数据集(如CIFAR-10)进行微调。具体实现方式与NLP中的微调类似,只是涉及到的模型和数据集不同。

总的来说,模型微调Fine-Tuning是一项强大的技术,能够显著提升模型在特定任务上的表现。随着深度学习技术的不断发展,这项技术也将变得更加成熟和易用,为解决各种实际问题提供强有力的支持。

相关文章
|
24天前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
70 2
|
10天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
51 2
|
20天前
|
数据采集 人工智能 监控
体验《AI大模型助力客户对话分析》解决方案测评
该方案详细描述了实现AI客服对话分析的实践原理和实施方法,包括数据收集、模型训练、部署及评估等步骤,逻辑清晰。但在OSS配置和模型选择等方面存在一些困惑,需进一步引导。示例代码大部分可直接应用,但特定环境下需调整。总体而言,方案基本能满足实际业务需求,但在处理复杂对话时需进一步优化。
45 6
|
24天前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
2天前
|
人工智能 自然语言处理 关系型数据库
从数据到智能,一站式带你了解 Data+AI 精选解决方案、特惠权益
从 Data+AI 精选解决方案、特惠权益等,一站式带你了解阿里云瑶池数据库经典的AI产品服务与实践。
|
8天前
|
机器学习/深度学习 人工智能 机器人
何恺明新作出炉!异构预训练Transformer颠覆本体视觉学习范式,AI性能暴涨超20%
【10月更文挑战第29天】在机器人学习领域,训练通用模型面临数据异构性的挑战。近期研究“Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transformers”提出异构预训练Transformer(HPT),通过大规模预训练学习跨不同本体和任务的共享表示,显著提升了性能。实验结果显示,HPT在未见过的任务上表现优异,性能提升超过20%。
23 6
|
16天前
|
存储 人工智能 弹性计算
基于《文档智能 & RAG让AI大模型更懂业务》解决方案实践体验后的想法
通过实践《文档智能 & RAG让AI大模型更懂业务》实验,掌握了构建强大LLM知识库的方法,处理企业级文档问答需求。部署文档和引导充分,但需增加资源选型指导。文档智能与RAG结合提升了文档利用效率,但在答案质量和内容精确度上有提升空间。解决方案适用于法律文档查阅、技术支持等场景,但需加强数据安全和隐私保护。建议增加基于容量需求的资源配置指导。
69 4
|
16天前
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
35 4
|
17天前
|
人工智能 弹性计算 监控
触手可及,函数计算玩转 AI 大模型解决方案
阿里云推出的“触手可及,函数计算玩转 AI 大模型”解决方案,利用无服务器架构,实现AI大模型的高效部署和弹性伸缩。本文从实践原理、部署体验、优势展现及应用场景等方面全面评估该方案,指出其在快速部署、成本优化和运维简化方面的显著优势,同时也提出在性能监控、资源管理和安全性等方面的改进建议。
47 5
|
17天前
|
人工智能 数据安全/隐私保护 UED
RAG让AI大模型更懂业务解决方案部署使用体验
根据指导文档,部署过程得到了详细步骤说明的支持,包括环境配置、依赖安装及代码示例,确保了部署顺利进行。建议优化知识库问题汇总,增加部署失败案例参考,以提升用户体验。整体解决方案阅读与部署体验良好,有助于大型语言模型在特定业务场景的应用,未来可加强行业适应性和用户隐私保护。
56 5