从迷茫到精通:揭秘模型微调如何助你轻松驾驭AI新热点,解锁预训练模型的无限潜能!

简介: 【10月更文挑战第13天】本文通过简单的问题解答形式,结合示例代码,详细介绍了模型微调的全流程。从选择预训练模型、准备新任务数据集、设置微调参数,到进行微调训练和评估调优,帮助读者全面理解模型微调的技术细节和应用场景。

通俗易懂理解模型微调全流程

你是否曾经对模型微调(Fine-tuning)感到困惑,不知道它究竟是如何工作的?别担心,本文将通过简单的问题解答形式,结合示例代码,带你全面了解模型微调的全流程。

问:什么是模型微调?

答:模型微调是一种通过调整预训练模型参数,以提高其在特定任务上表现的技术。它基于已经在大规模数据集上预训练好的模型,利用新的、特定任务相关的数据集进行进一步训练。

问:为什么需要模型微调?

答:预训练模型虽然具备强大的特征提取能力和良好的泛化性能,但直接用于特定任务时,往往难以达到最佳性能。模型微调能够弥合通用预训练模型与特定应用需求之间的差距,使模型更好地适应新的任务或领域。

问:模型微调的全流程是怎样的?

答:模型微调的全流程可以分为以下几个步骤:

选择预训练模型:根据任务需求选择一个合适的预训练模型,如BERT、GPT等。
准备新任务数据集:收集并处理与特定任务相关的数据集,包括训练集、验证集和测试集。
设置微调参数:根据任务特性和模型特点,设置合适的学习率、批处理大小、训练轮次等参数。
进行微调训练:在新任务数据集上对预训练模型进行进一步训练,通过调整模型权重和参数来优化模型在新任务上的性能。
评估与调优:在验证集上评估模型的性能,并根据评估结果调整模型的参数和结构,直到达到满意的性能。
问:能否给出一个具体的示例代码?

答:当然可以。以下是一个使用Hugging Face Transformers库进行BERT模型微调的简单示例代码:

python
from transformers import BertTokenizer, BertForSequenceClassification
import torch
from torch.nn.functional import softmax

初始化BERT的Tokenizer和模型

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

输入句子

sentence = "This course is amazing!"

分词和映射到Token IDs

input_ids = tokenizer.encode(sentence, add_special_tokens=True)
input_ids = torch.tensor([input_ids])

模型推理,得到logits

with torch.no_grad():
outputs = model(input_ids)
logits = outputs.logits

对logits进行Softmax处理

probabilities = softmax(logits, dim=-1)

定义类别

labels = ["NEGATIVE", "POSITIVE"]

获取概率最高的类别作为最终的预测结果

predicted_label = labels[torch.argmax(probabilities)]

print(f"Prediction: {predicted_label}")
这段代码展示了如何使用BERT模型对句子进行情感分析,并输出预测结果。在实际应用中,你需要使用自己的数据集进行微调训练,并调整相应的参数。

通过以上解答和示例代码,相信你已经对模型微调有了更深入的理解。模型微调是一项强大的技术,能够充分利用预训练模型的通用特征,并在少量新数据的基础上快速适应新的任务需求。希望这篇文章能够帮助你更好地掌握模型微调的全流程。

相关文章
|
27天前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
324 109
|
15天前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
69 1
|
2月前
|
人工智能 自然语言处理 搜索推荐
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
2天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
75 4
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
5天前
|
人工智能 负载均衡 API
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
大家好,我是Immerse,独立开发者、AGI实践者。分享编程、AI干货、开源项目与个人思考。关注公众号“沉浸式趣谈”,获取独家内容。Vercel新推出的AI Gateway,统一多模型API,支持自动切换、负载均衡与零加价调用,让AI开发更高效稳定。一行代码切换模型,告别接口烦恼!
56 1
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
|
23天前
|
人工智能 监控 Kubernetes
稳定支撑大规模模型调用,携程旅游的 AI 网关实践
为了进一步提升服务水平和服务质量,携程很早就开始在人工智能大模型领域进行探索。而随着工作的深入,大模型服务的应用领域不断扩大,公司内部需要访问大模型服务的应用也越来越多,不可避免的就遇到了几个问题,我们自然就会想到使用网关来对这些服务接入进行统一管理,并增加各种切面上的流量治理功能。
120 35
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
185 8
|
2月前
|
人工智能 自然语言处理 机器人
AI Compass前沿速览:Jetson Thor英伟达AI计算、Gemini 2.5 Flash Image、Youtu腾讯智能体框架、Wan2.2-S2V多模态视频生成、SpatialGen 3D场景生成模型
AI Compass前沿速览:Jetson Thor英伟达AI计算、Gemini 2.5 Flash Image、Youtu腾讯智能体框架、Wan2.2-S2V多模态视频生成、SpatialGen 3D场景生成模型
AI Compass前沿速览:Jetson Thor英伟达AI计算、Gemini 2.5 Flash Image、Youtu腾讯智能体框架、Wan2.2-S2V多模态视频生成、SpatialGen 3D场景生成模型

热门文章

最新文章