威胁情报 设备之外的安全能力

简介:

网络攻击手法日趋纯熟及精密并具破坏性。从网络安全商角度来看,为众多每天受到攻击的企业解决问题成为日益严峻的挑战。

 

 

Fortinet创始人兼CTO 谢华

现代网络安全技术,假设企业已具备所需的专业人员、政策和流程,但部署时仍需审视潜在的攻击。

除却盒子,也就是硬件安全设备以外,一些看不见的安全能力,无疑也是网络安全防御中不可或缺的。这就是威胁情报(Threats Intelligence),或者更具体的来讲,能够使安全设备在不断变化的威胁环境中,迅速进行威胁响应的一种能力。

获得即时及准确预测威胁情报比所想困难,背后需要一个强大的研发部门,包括以下几个重要组成部分:

1. 分而治之

在大多业务范畴,大型团队等于较高产量输出。然而,利用传统手法打击网络犯罪分子已经失效。根据我的经验,有效威胁研究部门应由多个小队组成,而每个团队都会专注于特定类型的威胁。这样可以重点提升专业水平和竞争能力,从而提升效率并识别更多威胁,缩短客户面对威胁的时间。

2. 保持团队灵活性

威胁研究团队必须灵活应对。网络威胁环境变化只需一天、数小时甚至数分钟。团队必须能够调整自己的优先次序,集中注意力在其领域。譬如说,Fortinet会根据威胁形势演变预测更新研究计划。在确定新方向后,挑选最适合的研究人员加入指定团队,深入评估新出现的威胁。最近威胁例子包括物联网、勒索软件(Ransomware)和自主恶意软件(Autonomous Malware)。

3. 综观全局

企业应鼓励研究人员大处着眼按其兴趣工作,即使其兴趣范畴与公司产品没有直接联系。例如,物联网漏洞研究可以加深企业安全供应商对威胁环境趋势的影响 。

4. 提升直觉力

研究团队的领队必须培训其团队对威胁识别的敏锐度,以确保攻击在发生前已经可以辨识该潜在威胁。例如去年9月Mirai僵尸网络入侵物联网,专业网络威胁研究员已于多年间作出物联网漏洞将是下一个重大威胁警告。威胁发展迅速和多变, 如果网络安全商在安全研究上滞后,客户的网络就会受到威胁。

5. 收集数据

威胁研究团队获得越多数据,研究成果就越显著。在Fortinet,我们除了利用遍布全球的300万个感应器外,还会积极地透过网络威胁联盟(Cyber Threat Alliance)与国际刑警组织(INTERPOL)、KISA及其他网络安全商交换威胁情报。近几个月来, Fortinet成功与全球更多机构和营运商合作,帮助各方建立更大规模的威胁数据库来监控、防止和追溯恶意软件攻击的源头。

6. 研究技术的投入

有效的研究团队需要先进工具协助分析每秒接收的庞大数据。虽然现时我们有内容模式识别语言(CPRLs),帮助识别成千上万的当前、未来病毒变体。在不久的将来,我们将会依靠大数据分析和人工智能(AI)等技术进行分析,AI 将帮助网络安全不断适应持续增长的攻击面。未来,一套成熟的人工智能系能够自动完成这些复杂的决策。

无论AI发展得多先进,甚至全自动化,让机器自行作出所有决定的也是不可能的,人为干预仍是必需的。大数据和分析平台可以预测恶意软件的发展,却不能防止恶意软件突变。

基本上恶意软件会随着互联网的发展,及我们于日常生活中技术应用演变。例如,如果在未来几年,无人驾驶车和可携式物联网装置被广泛使用,网络犯罪分子将会一如既往地寻找方法攻击这些汽车和设备。同样地,如果加密货币(Cryptocurrencies)在今年内继续维持高利率水平,将会吸引黑客入侵。

自动化概念为网络犯罪分子开拓很多新可能性,对企业威胁加剧。由于黑客在恶意软件中加强其自动化攻击能力,这些程序化设计不但加快攻击速度,还缩短从发动攻击到造成损害之间的时间,同时具有避开侦测的能力。企业需要在分布式网络生态系统中,从物联网到云端层面,透过协调一致的方式进行实时回应。现时未有太多企业有能力作出如此措施,这正是IT总监们应该开始着手改善的事情。


本文转自d1net(转载)

相关实践学习
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
相关文章
|
Ubuntu
Ubuntu :relocation R_X86_64_32 against `.rodata‘ can not be used when making a PIE object;
Ubuntu :relocation R_X86_64_32 against `.rodata‘ can not be used when making a PIE object;
3376 0
Ubuntu :relocation R_X86_64_32 against `.rodata‘ can not be used when making a PIE object;
|
监控 安全 BI
ERP系统中的移动应用与远程访问
【7月更文挑战第25天】 ERP系统中的移动应用与远程访问
418 2
|
人工智能 搜索推荐
阿里云亮相白鲸出海全球流量大会,为出海企业提供一站式通信解决方案
阿里云亮相白鲸出海全球流量大会,为出海企业提供一站式通信解决方案
365 9
|
11月前
|
人工智能 自然语言处理 BI
蓝凌aiKM,双能驱动场景变革:蓝凌知识管理平台和通义千问共建实践
蓝凌aiKM通过双能驱动场景变革,结合蓝凌知识管理平台与通义千问大模型,助力企业构建智能“大脑”。aiKM不仅提升知识管理效率,还赋能业务场景,如新人培训、营销支持和流程优化。蓝博士产品整合专属内容与大模型能力,提供智能搜索、问答及推荐服务,帮助企业高效利用私域知识资产,推动数字化转型。蓝凌在AI时代致力于激活企业新生产力,打造知识护城河,成为核心竞争力。
424 0
|
8月前
|
JavaScript 前端开发
|
机器学习/深度学习 数据采集 人工智能
深度学习之稳健的模型推理与不确定性建模
基于深度学习的稳健模型推理与不确定性建模,是现代AI系统中至关重要的研究方向。随着深度学习在各类应用中的成功,如何保证模型在面对未知或不确定性输入时仍能做出稳健的推理,并能够量化这种不确定性,成为关键问题。稳健性与不确定性建模可以提高模型的安全性、可靠性,尤其在自动驾驶、医疗诊断等高风险领域。
589 0
AttributeError: module ‘torch.jit‘ has no attribute ‘_script_if_tracing‘
AttributeError: module ‘torch.jit‘ has no attribute ‘_script_if_tracing‘
535 0
|
机器学习/深度学习 分布式计算 数据挖掘
MaxFrame 性能评测:阿里云MaxCompute上的分布式Pandas引擎
MaxFrame是一款兼容Pandas API的分布式数据分析工具,基于MaxCompute平台,极大提升了大规模数据处理效率。其核心优势在于结合了Pandas的易用性和MaxCompute的分布式计算能力,无需学习新编程模型即可处理海量数据。性能测试显示,在涉及`groupby`和`merge`等复杂操作时,MaxFrame相比本地Pandas有显著性能提升,最高可达9倍。适用于大规模数据分析、数据清洗、预处理及机器学习特征工程等场景。尽管存在网络延迟和资源消耗等问题,MaxFrame仍是处理TB级甚至PB级数据的理想选择。
269 6
|
Rust 安全 C++
系统编程的未来之战:Rust能否撼动C++的王座?
【8月更文挑战第31天】Rust与C++:现代系统编程的新选择。C++长期主导系统编程,但内存安全问题频发。Rust以安全性为核心,通过所有权和生命周期概念避免内存泄漏和野指针等问题。Rust在编译时确保内存安全,简化并发编程,其生态系统虽不及C++成熟,但发展迅速,为现代系统编程提供了新选择。未来有望看到更多Rust驱动的系统级应用。
349 1
|
供应链 小程序 Java
基于Java超市库存管理系统设计和实现(源码+LW+调试文档+讲解等)
基于Java超市库存管理系统设计和实现(源码+LW+调试文档+讲解等)

热门文章

最新文章