设备指纹:掌握联网设备全貌,为风控决策、模型建设提供重要支撑

简介: 作为了业务体系的基础组件之一,设备指纹广泛应用在标记、追踪、临时凭证、分析、反欺诈等不用服务场景下,是业务安全体系的重要组成部分。

作为了业务体系的基础组件之一,设备指纹广泛应用在标记、追踪、临时凭证、分析、反欺诈等不用服务场景下,是业务安全体系的重要组成部分。

设备指纹采集设备各项信息,然后赋予设备唯一的标识,并通过多种关联和相似查找算法来保障这个标识的稳定性。通过设备采集上报的信息数据,能够分析出一个设备关联账号的常用地、设备活跃时间段、设备是否有风险等,多个维度构建出设备画像,实时呈现给用户当前设备的风险情况。

也就是说,通过设备指纹技术,能够掌握账号的行为习惯、网络环境、设备画像、位置信息、行为信息,助力身份核验、安全防护、推广营销。同时,通过设备指纹采集信息和数据沉淀,为数据分析、风控决策、模型建设提供强大支撑。

全面了解每台设备的全貌

识别设备是设备指纹的核心能力,只有能够准确识别网络中的设备,才能发挥相应作用。设备指纹的采集的信息涉及特征包含设备的操作系统、系统的各种插件、浏览器的语言设置及其时区、设备的硬件ID、手机的IMEI、网卡Mac地址、字体设置、LBS地址等。以顶象设备指纹为例,采集的信息主要包含硬件、网络、系统三部分。

硬件属性:设备品牌、型号、IMEI(国际移动设备识别码)、处理器、内存、分辨率、亮度、摄像头、电池、陀螺仪、蓝牙MAC、无线MAC、出厂标识。

系统属性:系统、版本、语言、Ls位置、开机时间、运行时间、电池状态、设备是否异常、是否root/越狱、是否篡改设备信息、是否有作弊工具等。

网络属性:WiFi网络、运营商网络、信号强度、基站信息。

为风控反欺诈提供关键决策

基于采集的信息,顶象设备指纹可以监测设备的运行状态,发现root(非法读取文件、反安全检测)、自动化工具(批量注册、活动作弊)、模拟器(自动注册小号、秒杀)、多开(虚假作弊、养号、)、改机、群控(薅羊毛、虚假流量),App重打包(植入广告、破解功能限制)等异常行为,辅助风控反欺诈体系在注册、登录、营销、交易、充值、渠道推广等业务场景中,识别出虚假注册、盗号、恶意登录、薅羊毛、推广作弊、批量养号等欺诈风险,并对应采取相应的防范策略方案。

识别机器攻击:机器攻击/脚本攻击一般是通过编写自动化脚本或工具,批量化和自动化的向目标网站发起请求,通过使用设备指纹终端风险识别能力,能够很好地识别是否机器、脚本发起的请求。

识别虚假注册/恶意登录:利用设备指纹技术,可以识别模拟器上的账号注册、同设备一定时间段内的大量注册,以及注册的设备是否有高风险。同样,在登录场景有效识别统一设备上频繁登录尝试、撞库风险,记录识别登录设备是否频繁切换等。

识别多账号绑定:在营销活动中,一般活动规则会限制同设备同账号只能参加一次。通过设备指纹技术可以做快速识别是设备上是否绑定多个账号,同一个账号是否在多个设备上登录等。

识别渠道作弊:在应用推广、展示广告等场景下,黑灰产会通过各种技术工具伪造数据、流量作弊,骗取推广费用。通过设备指纹技术可以及时识别虚假机器、真机虚假安装等,从而有效地追踪渠道流量和表现。

识别模拟器/调试风险:设备指纹技术能够有效检测到设备终端环境和运行期风险,如,模拟器、越狱、调试、注入、攻击框架等。

为大数据分析与关联关系分析提供重要支撑

在大数据分析和机器学习场景,顶象设备指纹可以作为最基础的字段,提供另一个维度来观察业务指标数据,进行关联分析。比如,分析活跃设备数、新增设备数、用户使用的机型分布、同一个设备上交易笔数和金额、同一个设备上访问的用户数等。在关系网的构建上,除了使用用户手机号、卡号等作为节点,也可以把设备ID作为节点,观察用户间的关系。

基于顶象设备指纹信息以及业务数据的充分挖掘,利用应用图数据挖掘、无监督算法、半监督算法、有监督算法等多角度充分挖掘,结合应用场景、实际操作人员的具体需求直观而智能的在运营和监测平台呈现最有效信息,从而为多个行业和场景提供反欺诈、精准营销服务。

构建关联图谱:基于设备指纹信息以及业务数据,对场景需求和业务逻辑的理解,构建跨部门、跨产品构建覆盖个体、设备、组织、产品、交易等维度的复杂关联网络。

关联关系挖掘:基于设备指纹信息以及业务数据,提取个体和群体的静态画像、分析动态趋势、通过图数据挖掘技术定位潜在欺诈团伙并进行深度挖掘、特征衍生、应用机器学习定量分析后开发反团伙欺诈模型。

实现自我升级:基于设备指纹和业务大数据,沉淀风险数据,积累防御策略,建设专属的风控模型,并实时更迭到设备指纹,实现设备指纹安全性和防控性的升级演进。

云端交互的顶象设备指纹

顶象设备指纹支持安卓、iOS、H5、公众号、小程序,可有效侦测模拟器、刷机改机、ROOT越狱、劫持注入等风险,具有快速对抗、高效风险识别、99%以上稳定性和100%的唯一性的特点。

作为是顶象防御云的一部分,顶象设备指纹独有三大能力。

第一,快速对抗能力。业务应用暴露在互联网上,黑灰产则是隐藏在背后,所以攻防必然存在一定的滞后性,这就要求设备指纹技术在面对新的攻击方式和风险特征时,有及时的风险情报感知和防控升级的能力,后台可以结合各行业的攻防经验和风险数据沉淀,通过云+端的方式,进行快速的攻防升级,在一个攻防周期内解决掉业务风险。

第二,高效风险识别能力。设备指纹需要具备对设备基础环境和运行期的安全检测能力,能精准识别模拟器、root、越狱、调试、代码注入、多开、VPN代理等风险。例如,iOS平台hook、越狱行为,安卓root、debug、内存dump、注入、多开、模拟器、漏洞攻击等风险行为,WEB平台下浏览器颜色深度、分辨率,浏览器与系统、UA的匹配性和一致性、cookie是否禁用等行为。

第三,99%以上稳定性和100%的唯一性。设备指纹自身SDK代码需要进行保护,防止采集逻辑被破解和出现数据伪造,从数据采集源头上保证真实性和准确性。不管对设备参数进行篡改伪造(篡改IMEI、MAC地址、AndroidId、SIM卡信息、机型、品牌等),或是禁用、清除缓存和cookie,设备指纹都要保持不变,稳定性至少要保持在99%以上。任意两台设备的指纹不能相同,不发生碰撞,为每一台设备生成的设备指纹ID需要全球唯一,并且不可被篡改,唯一性上要保证在100%。

相关文章
|
8月前
|
人工智能 编解码 芯片
告别低效沟通|让技术提问不再头疼-这套高效AI提问模板来帮你
不会向ai提问,不知道怎么提问的 可以看看
20809 1
告别低效沟通|让技术提问不再头疼-这套高效AI提问模板来帮你
|
4月前
|
安全 Linux PHP
Web渗透-命令执行漏洞-及常见靶场检测实战
命令执行漏洞(RCE)指应用程序调用系统命令时,用户可控制输入参数,导致恶意命令被拼接执行,从而危害系统安全。常见于PHP的system、exec等函数。攻击者可通过命令连接符在目标系统上执行任意命令,造成数据泄露或服务瘫痪。漏洞成因包括代码层过滤不严、第三方组件缺陷等。可通过参数过滤、最小权限运行等方式防御。本文还介绍了绕过方式、靶场测试及复现过程。
1067 0
|
5月前
|
人工智能 自然语言处理 安全
如何让 AI 工具更懂你,更听话?
你是否也曾被AI“气到吐血”?明明说的是A,AI却给了B?别沮丧,2025年的AI也需要“正确沟通”。本文教你五大提示技巧:动态提示、多模态输入、Few-shot示例、任务分解与安全边界,让AI从“人工智障”变身“贴心助手”。学会“说AI的语言”,释放创造力,提升效率,开启智能生活新时代!
1451 0
|
6月前
|
人工智能 监控 API
MCP中台,究竟如何实现多模型、多渠道、多环境的统一管控?如何以MCP为核心设计AI应用架构?
本文产品专家三桥君探讨了以 MCP 为核心的 AI 应用架构设计,从统一接入、数据管理、服务编排到部署策略等维度,系统化分析了 AI 落地的关键环节。重点介绍了 API 网关的多终端适配、数据异步处理流程、LLM 服务的灰度发布与 Fallback 机制,以及 MCP Server 作为核心枢纽的调度功能。同时对比了公有云 API、私有化 GPU 和无服务器部署的适用场景,强调通过全链路监控与智能告警保障系统稳定性。该架构为企业高效整合 AI 能力提供了实践路径,平衡性能、成本与灵活性需求。
412 0
|
9月前
|
芯片
从"卡哇伊字体"看Docusign繁体中文显示异常 —甫连团队快速排障案例
3月23日,Docusign反馈台湾客户上传的繁体中文合同出现字体显示异常问题,影响多家重要企业。作为Docusign亚太区专业合作伙伴,我们迅速介入排查,确认为字体兼容性问题:系统无法识别DFKai-SB字体导致替代字体异常。通过测试验证与Docusign合作,最终于4月1日解决。此案例体现FreeLink在技术定位、临时解决方案及平台本地化改进推动中的关键价值,彰显全球SaaS平台与本地需求连接的专业能力。我们专注Docusign集成解决方案,获多项国际认证与殊荣,致力于为企业提供专业化支持。
245 2
|
10月前
|
机器学习/深度学习 人工智能 安全
AI大模型安全风险和应对方案
AI大模型面临核心安全问题,包括模型内在风险(如欺骗性对齐、不可解释性和模型幻觉)、外部攻击面扩大(如API漏洞、数据泄露和对抗性攻击)及生成内容滥用(如深度伪造和虚假信息)。应对方案涵盖技术防御与优化、全生命周期管理、治理与行业协同及用户教育。未来需关注动态风险适应、跨领域协同和量子安全预研,构建“技术+管理+法律”三位一体的防护体系,推动AI安全发展。
3211 1
|
存储 监控 安全
服务器死机,数据丢失怎么办?
【10月更文挑战第27天】当服务器死机且数据丢失时,应先尝试重启服务器并检查硬件问题。随后,利用备份数据、数据恢复软件或专业服务恢复数据。为预防未来数据丢失,需定期备份数据,使用热备份和RAID技术,定期维护服务器,强化安全性,并建立监控和日志记录机制。
671 8
|
JavaScript 安全 Java
java版药品不良反应智能监测系统源码,采用SpringBoot、Vue、MySQL技术开发
基于B/S架构,采用Java、SpringBoot、Vue、MySQL等技术自主研发的ADR智能监测系统,适用于三甲医院,支持二次开发。该系统能自动监测全院患者药物不良反应,通过移动端和PC端实时反馈,提升用药安全。系统涵盖规则管理、监测报告、系统管理三大模块,确保精准、高效地处理ADR事件。
543 1
|
机器学习/深度学习 数据可视化 算法
图特征工程实践指南:从节点中心性到全局拓扑的多尺度特征提取
本文详细介绍了如何利用NetworkX库从图结构中提取重要特征。首先,通过定义辅助函数设置了图的可视化选项,并以Zachary网络数据集为例进行了可视化展示。接着,文章深入探讨了三类图特征:基于节点的特征(如节点度、中心性等)、基于边的特征(如最短路径、邻域重叠等)以及基于图的特征(如Graphlets、Weisfeiler-Leman特征等)。通过这些特征的提取与分析,可以全面理解网络结构,识别关键节点,分析信息流动模式,并发现潜在的隐藏模式。本文不仅展示了如何应用这些特征来揭示社交网络中的角色和联系,还强调了其在交通网络分析和生物系统研究等领域的广泛应用潜力。
722 12
图特征工程实践指南:从节点中心性到全局拓扑的多尺度特征提取
|
前端开发 JavaScript API
2025年前端框架是该选vue还是react?有了大模型-例如通义灵码辅助编码,就不用纠结了!vue用的多选react,react用的多选vue
本文比较了Vue和React两大前端框架,从状态管理、数据流、依赖注入、组件管理等方面进行了详细对比。当前版本和下载量数据显示React更为流行,但Vue在国内用户量增长迅速。Vue 3通过组合式API提供了更灵活的状态管理和组件逻辑复用,适合中小型项目;React则更适合大型项目和复杂交互逻辑。文章还给出了选型建议,强调了多框架学习的重要性,认为技术问题已不再是选型的关键,熟悉各框架的最佳实践更为重要。
8967 1

热门文章

最新文章