横向对比七大深度学习框架

简介: 文章讲的是横向对比七大深度学习框架,在深度学习项目开始前,选择一个合适的框架是非常重要的事情。最近,来自数据科学公司 Silicon Valley Data Science 的数据工程师 Matt Rubashkin(UC Berkeley 博士)为我们带来了深度学习 7 种流行框架的深度横向对比,希望本文能对你带来帮助。
文章讲的是 横向对比七大深度学习框架在深度学习项目开始前,选择一个合适的框架是非常重要的事情。最近,来自数据科学公司 Silicon Valley Data Science 的数据工程师 Matt Rubashkin(UC Berkeley 博士)为我们带来了深度学习 7 种流行框架的深度横向对比,希望本文能对你带来帮助。


  在 SVDS,我们的研发团队一直在研究不同的深度学习技术;从识别图像到语音,我们也在各类框架下实现了不少应用。在这个过程中,我们意识到需要一个简明的方式来获取数据、创建模型、同时评估这些模型的表现。但当我们一次次开始新的深度学习项目时,我们却一直没有找到一个可以参考的标准来告诉自己如何开始。

  现在,为了回馈开源社区,同时帮助后来者,我们决定以我们的经验对目前流行的几种工具(Theano、TensorFlow、Torch、Caffe、MXNet、Neon 和 CNTK)进行一次横向对比。以下图表展示了各类深度学习工具的优劣,希望对大家能有所帮助。

  先放结论

  这组对比参考了多种公开基准评测,以及我们在图像/语音识别应用时对这些技术的 主观印象。此外,你需要注意:

  语言

  当你开始一个深度学习项目时,你最好使用一个支持你所会语言的框架。比如 Caffe(C++)和 Torch(Lua)只能支持有限的语言(最近,随着 PyTorch 的出现,情况有所改观)。所以如果你希望选用上述两个框架,我们建议你事先熟悉 C++或 Lua 语言。相比之下,TensorFlow 与 MXNet 具有丰富的多语言支持,即使你对 C++感到陌生也可以使用它们。



  教程和资源

  目前,各类深度学习框架的教程与可利用的资源在质量和数量上有着显著的不同。Theano,TensorFlow,Torch 和 MXNet 有着很详尽的文档教程,很容易被初学者理解和实现。与此相比,虽然微软的 CNTK 和英特尔的 Nervana Neon 也是强大的工具,我们却很少能见到有关它们的新手级资料。此外,在研究过程中,我们发现 GitHub 社区的参与度不仅可以用于准确地评价不同工具的开发水平,而且还是在搜索 StackOverflow 或 repo 的 Git Issues 时能否快速解决问题的参考性指标。当然,作为谷歌提供的框架,TensorFlow 理所当然地在教程,资源,开发者和社区贡献者的数量上遥遥领先。


  CNN 建模能力

  卷积神经网络(CNN)经常被用于图像识别、推荐引擎和自然语言识别等方向的应用。CNN 由一组多层的神经网络组成,在运行时会将输入的数据进行预定义分类的评分。CNN 也可用于回归分析,例如构成自动驾驶汽车中有关转向角的模型。在横评中,我们评价一种框架的 CNN 建模能力考虑到以下几个特性:定义模型的机会空间、预构建层的可用性、以及可用于连接这些层的工具和功能。我们发现,Theano,Caffe 和 MXNet 都有很好的 CNN 建模能力。其中,TensorFlow 因为易于建立的 Inception V3 模型,Torch 因为其丰富的 CNN 资源——包括易于使用的时间卷积集使得这两种框架在 CNN 建模能力上脱颖而出。

  RNN 建模能力

  递归神经网络(RNN)常用于语音识别,时间序列预测,图像字幕和其他需要处理顺序信息的任务。由于预建的 RNN 模型不如 CNN 数量多,因此,如果你已经有一个 RNN 深度学习项目,优先考虑旧 RNN 模型是在哪种框架里实现的最重要。目前,Caffe 上的 RNN 资源最少,而 Microsoft 的 CNTK 和 Torch 有丰富的 RNN 教程和预构建模型。当然,最流行的 TensorFlow 中也有一些 RNN 资源,TFLearn 和 Keras 中更有很多使用 TensorFlow 的 RNN 示例。

  架构

  为在特定框架中构建和训练新模型,易于使用和模块化的前端是至关重要的。TensorFlow,Torch 和 MXNet 都有直观而模块化的架构,让开发相对变得简单。相比之下,我们在 Caffe 这样的框架上需要进行大量的工作才能创建一个新层。另外我们发现在开发过程中,因为有 TensorBoard web GUI 等应用的存在,TensorFlow 极易在训练中和训练后进行 debug 和监控。

  速度

  Torch 和 Nervana 具有开源卷积神经网络基准测试的最佳性能>>>

  Tensorflow 的性能在大多数测试中是具有竞争力的,而 Caffe 和 Theano 稍稍落后>>>

  微软声称他们的 CNTK 在一些 RNN 训练任务中有最快的速度。

  在另一项对比 Theano、Torch 和 TensorFlow 的 RNN 性能的研究中,Theano 是其中最快的。

  大多数深度学习应用都需要用到巨量的浮点运算(FLOP)。例如,百度的 DeepSpeech 识别模型需要 10s ExaFLOPs 用于训练,这是大于 10e18 的计算量。

  考虑到目前英伟达 Pascal 架构的 TitanX 等顶级显卡可以每秒执行 11e9 FLOP。

  因此,假如需要在大型数据集上训练一个新模型——用单 GPU 机器的话——可能会需要一个星期之久。为了减少构建模型所需的时间,我们需要使用多 GPU 并联的方式组建自己的机器。幸运的是,上述大部分架构都可以很好地支持多 GPU 运算。其中,据报道 MXNet 有着最好的多 GPU 优化引擎。

  Keras 兼容性

  Keras 是一个用于快速构建深度学习原型的高级库。我们在实践中发现,它是数据科学家应用深度学习的好帮手。Keras 目前支持两种后端框架:TensorFlow 与 Theano,而且 Keras 再过不久就会成为 TensorFlow 的默认 API。

  尽管如此,Keras 的作者表示,这一高级库在未来仍会作为支持多种框架的前端存在。

  总结

  如果你想要开始深度学习,你应该从评估自己的团队技能和业务需求开始。例如,如果一个以 Python 为中心的团队想开发图像识别的应用程序,你应该使用 TensorFlow,因为它有丰富的资源,较好性能和完整的原型工具。如果一个有 Lua 能力的团队希望将 RNN 大规模应用到生产环境中去,他们则会受益于 Torch 的高速和强大的 RNN 建模能力。

  未来,我们将继续讨论在更大规模的应用中这些框架的表现。这些挑战包括多机并联时的多 GPU 优化,多种开源库的兼容性,如 CMU Sphinx 和 Kaldi 等,尽请期待。


作者:覃里

来源:IT168

原文链接:横向对比七大深度学习框架

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
28天前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
41 7
|
1月前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
90 3
|
4月前
|
机器学习/深度学习 算法 TensorFlow
深入探索强化学习与深度学习的融合:使用TensorFlow框架实现深度Q网络算法及高效调试技巧
【8月更文挑战第31天】强化学习是机器学习的重要分支,尤其在深度学习的推动下,能够解决更为复杂的问题。深度Q网络(DQN)结合了深度学习与强化学习的优势,通过神经网络逼近动作价值函数,在多种任务中表现出色。本文探讨了使用TensorFlow实现DQN算法的方法及其调试技巧。DQN通过神经网络学习不同状态下采取动作的预期回报Q(s,a),处理高维状态空间。
63 1
|
4月前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
54 0
|
4月前
|
UED 开发者
哇塞!Uno Platform 数据绑定超全技巧大揭秘!从基础绑定到高级转换,优化性能让你的开发如虎添翼
【8月更文挑战第31天】在开发过程中,数据绑定是连接数据模型与用户界面的关键环节,可实现数据自动更新。Uno Platform 提供了简洁高效的数据绑定方式,使属性变化时 UI 自动同步更新。通过示例展示了基本绑定方法及使用 `Converter` 转换数据的高级技巧,如将年龄转换为格式化字符串。此外,还可利用 `BindingMode.OneTime` 提升性能。掌握这些技巧能显著提高开发效率并优化用户体验。
67 0
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习框架之争:全面解析TensorFlow与PyTorch在功能、易用性和适用场景上的比较,帮助你选择最适合项目的框架
【8月更文挑战第31天】在深度学习领域,选择合适的框架至关重要。本文通过开发图像识别系统的案例,对比了TensorFlow和PyTorch两大主流框架。TensorFlow由Google开发,功能强大,支持多种设备,适合大型项目和工业部署;PyTorch则由Facebook推出,强调灵活性和速度,尤其适用于研究和快速原型开发。通过具体示例代码展示各自特点,并分析其适用场景,帮助读者根据项目需求和个人偏好做出明智选择。
79 0
|
5月前
|
机器学习/深度学习 PyTorch TensorFlow
PAI DLC与其他深度学习框架如TensorFlow或PyTorch的异同
PAI DLC与其他深度学习框架如TensorFlow或PyTorch的异同
|
6月前
|
机器学习/深度学习 人工智能 算法框架/工具
【深度学习】OneFlow深度框架:数据流图与异步计算的科技革新
【深度学习】OneFlow深度框架:数据流图与异步计算的科技革新
78 2
|
5月前
|
机器学习/深度学习 PyTorch TensorFlow
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
|
6月前
|
机器学习/深度学习 编解码 计算机视觉
【深度学习】探秘PSD:合成到真实去雾框架的实例解析
【深度学习】探秘PSD:合成到真实去雾框架的实例解析
89 0