《构建实时机器学习系统》一1.8 实时机器学习模型的生存期

简介: 本节书摘来自华章出版社《构建实时机器学习系统》一 书中的第1章,第1.8节,作者:彭河森 汪涵,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.8 实时机器学习模型的生存期

进行实时机器学习开发必须考虑生存期。生存期是指一个系统从提出、设计、开发、 测试到部署运用、维护、更新升级或退役的整个过程。若在生存期设计上出现了数据,那么在后面的使用中就会出现各种各样的瓶颈阻碍应用产生价值。
从软件工程的角度上讲,开发实时机器学习也遵从构思、分析、设计、实现和维护五个步骤,这五个步骤可能会循环往复,随着业务的发展进行多次迭代。实时机器学习模型的应用由于其技术的特殊性,也具有自己的小型生存期,其中包括数据收集、数据分析、离线手工建模评测、上线自动化建模评测这四个方面。如图1-1所示,离线手工建模评测、上线自动化建模评测这两个部分主要是靠监督式机器学习。而数据分析主要是依靠非监督式机器学习和统计数据分析。

screenshot

值得一提的是,进行上面这四个步骤的前提是机器学习模型能够给组织和用户带来价值。但是,众多开发人员甚至是领导层都不愿意面对的一个问题是:我的模型真的有用吗?
对于一些非机器学习大数据类的初创公司来说,在用户数量并不太多的情况下,用非监督式机器学习进行少量数据分析,然后用人力进行反馈,反而有可能会取得更优良的投资回报率。笔者道听途说得知国内一些门户视频网站,就算在公司都已经上市之后,仍然还在使用人工选择的方式进行视频推介,甚至还取得了尚可的效果。
如果机器学习不能给组织带来直接效果,就算有高层支持,对于机器学习从业人员来说也不是很好的职业选择。在机器学习能为组织带来效益的情况下,让数据说话,从业人员才能够不断进行深挖,并得到更多的锻炼和领域洞见;与此相反,如果所建立的系统听起来很好,但是却没能带来相对应的效益,那么这样岗位上从业人员的工作重心就会像浮萍一样随波逐流,被公司政治利益驱动,长期来说这样很不利于从业人员的个人发展。
机器学习实战的最高境界,就是知行合一,在创造科技前沿作品的同时,能够为个人、组织和社会带来效益,这也是本书写作的指导思想。
在下面的章节里,我们将会从更实际的角度出发来探索实时机器学习的应用。其中,第2章到第4章,我们将会介绍监督式机器学习模型,并且学习建模的工具Pandas和Scikit-learn;第6章到第9章,我们将会介绍实时机器学习的架构,并且学习使用Docker、 RabbitMQ、Elasticsearch及数据库等重要组成部分。

相关文章
|
4天前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
6天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
15天前
|
机器学习/深度学习 自然语言处理 Linux
Linux 中的机器学习:Whisper——自动语音识别系统
本文介绍了先进的自动语音识别系统 Whisper 在 Linux 环境中的应用。Whisper 基于深度学习和神经网络技术,支持多语言识别,具有高准确性和实时处理能力。文章详细讲解了在 Linux 中安装、配置和使用 Whisper 的步骤,以及其在语音助手、语音识别软件等领域的应用场景。
47 5
|
15天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
12天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
42 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
16天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
32 1
|
16天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
40 1
|
1月前
|
数据采集 移动开发 数据可视化
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
这篇文章介绍了数据清洗、分析、可视化、模型搭建、训练和预测的全过程,包括缺失值处理、异常值处理、特征选择、数据归一化等关键步骤,并展示了模型融合技术。
66 1
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
|
25天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
68 1
|
28天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
下一篇
无影云桌面