验证集的划分方法:确保机器学习模型泛化能力的关键

简介: 本文详细介绍了机器学习中验证集的作用及其划分方法。验证集主要用于评估模型性能和调整超参数,不同于仅用于最终评估的测试集。文中描述了几种常见的划分方法,包括简单划分、交叉验证、时间序列数据划分及分层抽样划分,并提供了Python示例代码。此外,还强调了在划分数据集时应注意随机性、数据分布和多次实验的重要性。合理划分验证集有助于更准确地评估模型性能并进行有效调优。


目录

一、验证集的作用

二、验证集的划分方法

三、注意事项

四、总结


image.gif 编辑

在机器学习任务中,我们不仅要关注模型在训练数据上的表现,更重要的是模型在未见数据上的泛化能力。为了评估和提高这种泛化能力,我们通常会将数据集划分为训练集、验证集和测试集。其中,验证集在模型选择和调优过程中起着至关重要的作用。本文将详细介绍验证集的划分方法及其重要性。

一、验证集的作用

验证集主要用于在训练过程中评估模型的性能,并帮助我们进行超参数调整和模型选择。与测试集不同,验证集在模型开发阶段是可以多次使用的,以便我们根据验证集上的性能来调整模型。一旦模型在验证集上表现良好,我们再使用测试集来评估模型的最终性能。

二、验证集的划分方法

image.gif 编辑

  • 简单划分
  • 最简单的方法是将整个数据集随机划分为训练集、验证集和测试集。通常,训练集占大部分数据(如70%),验证集和测试集各占一部分(如15%和15%)。这种方法适用于数据量较大的情况,可以确保每个集合都有足够的数据。
  • 交叉验证
  • 当数据量较小时,简单划分可能导致验证集和测试集的数据量不足,无法准确评估模型性能。这时,我们可以使用交叉验证的方法。其中,k折交叉验证是最常用的一种。具体做法是将数据集分成k份,每次使用其中的k-1份作为训练集,剩下的1份作为验证集。这个过程重复k次,每次使用不同的部分作为验证集。最后,我们可以计算k次验证的平均性能作为模型的性能指标。
  • 时间序列数据的划分
  • 对于时间序列数据,我们不能简单地随机划分数据集,因为时间序列数据具有时间依赖性。在这种情况下,我们通常会将数据集按时间顺序划分为训练集、验证集和测试集。这样可以确保模型在验证集和测试集上评估时,不会“看到”未来的数据。
  • 分层抽样划分
  • 当数据集中存在类别不平衡问题时,为了确保验证集和测试集中各类别的比例与原始数据集相似,我们可以采用分层抽样的方法进行划分。这样可以避免模型在验证集和测试集上受到类别不平衡的影响。
  • image.gif 编辑

使用以下代码来演示验证集的划分和加载:

import torch  
from torch.utils.data import random_split, DataLoader  
from torchvision import datasets, transforms  
  
# 设置随机数种子以确保可重复性  
torch.manual_seed(42)  
  
# 加载数据集,这里以MNIST数据集为例  
transform = transforms.Compose([transforms.ToTensor()])  
dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)  
  
# 计算每个集合的大小  
dataset_size = len(dataset)  
train_size = int(0.7 * dataset_size)  # 70% 的数据用作训练集  
val_size = int(0.15 * dataset_size)  # 15% 的数据用作验证集  
test_size = dataset_size - train_size - val_size  # 剩余的数据用作测试集  
  
# 使用random_split来划分数据集  
train_dataset, val_dataset, test_dataset = random_split(dataset, [train_size, val_size, test_size])  
  
# 创建数据加载器  
batch_size = 64  
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)  
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)  
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)  
  
# 现在你可以使用这些加载器来训练、验证和测试你的模型了。  
# 例如,以下是一个简单的训练循环示例:  
for epoch in range(5):  # 假设我们训练5个epoch  
    for images, labels in train_loader:  
        # 在这里添加你的训练代码,例如:  
        # outputs = model(images)  
        # loss = criterion(outputs, labels)  
        # ...  
        print("Training batch processed.")  
      
    # 在每个epoch结束时进行验证  
    correct = 0  
    total = 0  
    with torch.no_grad():  # 不需要计算梯度,节省内存和计算资源  
        for images, labels in val_loader:  
            # 在这里添加你的验证代码,例如:  
            # outputs = model(images)  
            # _, predicted = torch.max(outputs.data, 1)  
            # total += labels.size(0)  
            # correct += (predicted == labels).sum().item()  
            print("Validation batch processed.")  
    # 计算验证集上的准确率等指标...

image.gif

示例代码主要是为了演示如何划分和加载数据集。在实际的训练和验证过程中,你需要添加模型的初始化、损失函数的定义、优化器的选择等代码。同时,你可能还需要调整batch_size、epoch数量等超参数来优化模型的训练效果。

三、注意事项

  1. 随机性:在划分数据集时,应确保划分过程是随机的,以避免引入偏差。同时,为了实验的可重复性,应设置固定的随机种子。
  2. 数据分布:应确保划分后的训练集、验证集和测试集的数据分布与原始数据集相似,以便模型能够更好地泛化到未见数据。
  3. 多次实验:由于数据集的划分具有随机性,因此建议进行多次实验并取平均值作为最终性能评估指标,以提高评估的准确性。

四、总结

验证集的划分是机器学习任务中至关重要的一步。通过合理的划分方法,我们可以更准确地评估模型的性能并进行有效的模型选择和调优。在实际应用中,应根据具体的数据集特性和任务需求选择合适的划分方法。

相关文章
|
14天前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
27 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
17天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
121 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
6天前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
41 18
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
3天前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
17 4
|
1月前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
82 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
1月前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
160 4
|
7天前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
39 14
|
1月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
57 2

热门文章

最新文章