数据湖:大数据游泳的安全方式?

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

自从Pentaho公司首席技术官詹姆斯•狄克逊创造了“数据湖”这个词,至今已有五年多的时间。他当时提出这个建议,“如果你认为数据集市是一个经过清洗,方便消费的瓶装水商店的‘数据湖’,那么数据湖则是一个更自然状态的水体。”这个比喻很简单。但根据专家的经验,许多最终用户对这个的概念还有很多困惑。在这篇文章中,专家想澄清数据池是什么,组织是否会考虑使用数据湖,以及他们使用数据湖所面临的挑战,并概述了一些支持数据湖软件工具的发展。

数据湖提供了一个处理大数据的方法。数据湖结合任何格式和任何类型的数据的海量存储能力,以及改造和分析数据处理能力。通常,数据湖使用Hadoop技术实现。来自不同来源的详细原始的数据被加载到一个单一的综合信息库,可以看到提供给用户分析的任何数据。要理解为什么数据湖已成为流行的这种方法与企业数据仓库的对比是很有帮助的(EDW)。在某些方面,一个企业级数据仓库就类似于一个数据湖,可以作为整个组织的信息的集中存储库。然而,数据加载到一个企业级数据仓库一般概括为结构化数据。工程数据仓库系统是典型的基于关系数据库的技术,其目的是为了处理结构化信息。虽然已经在关系数据库的可扩展性有了一些进步,他们一般没有Hadoop那样的可扩展性。由于这些技术是不可扩展的,存储到组织中的所有原始数据,采用它是不实际的。因此,有必要总结。与之形成对比的是,一个数据湖包含了组织中产生的最详尽的数据。所述的数据可能是结构化的信息,如销售交易数据,或非结构化信息,例如在客户服务交互中交换的电子邮件。

Hadoop经常使用数据湖

Hadoop可以存储和管理大量后续分析处理的结构化和非结构化数据。Hadoop的出现使其存储大容量信息更加实惠和可行,并且组织开始收集和存储整个组织不同系统的原始细节。Hadoop也成为非结构化信息的存储库,如社交媒体和诸如日志文件的半结构化数据。事实上,人们的基准研究显示,社会化媒体数据是第二个最重要的来源,也在大数据分析中使用的外部信息。

除了处理更大的卷和更多种类的信息以外,数据湖能够更快地获得信息。由于数据是以原始形式聚集,不需要预处理。因此,一旦产生和收集,其信息可以被立即添加到数据湖。这种方法已经引起了一些争议,许多行业分析师甚至厂商都在担心数据湖会变成数据沼泽。一般情况下,围绕数据源缺乏治理的数据成为数据湖的焦点,这是一个适当的话题。这些数据集应该像组织内的任何其他信息资产一样被管理。所面临的挑战是,大多数的治理的工具和技术已经为关系数据库和EDWs开发。从本质上说,数据湖泊所使用的大数据技术已经超过了自己所需,而没有提供为企业部署所需的所有功能。

另外,也许围绕术语有一些轻微的争议。专家提出这个问题,这样,无论供应商选择的术语如何,人们可以识别数据湖和意识到的挑战。Cloudera的企业数据中心使用的术语来表示与数据湖本质上相同的概念。Hortonworks也包含数据湖的术语。IBM公司承认数据湖的价值以及其在这个岗位的挑战,但IBM公司的大数据传播者吉姆•库比拉斯说,质疑最近在LinkedIn所提到的职位的术语,“数据湖”术语并不是IBM网站上的突出特色。

尽管面临着争议和挑战,数据湖继续增长受到广泛欢迎。它们提供了数据科学的重要功能。首先,它们包含进行预测分析的必要的详细数据。其次,他们允许非结构化数据的有效访问,如社交媒体或客户交互等文字。对企业来说,该信息可建立客户和他们行为的一个更完整的轮廓。数据湖也比传统的EDW可用架构提供更快的数据。而通过云计算的基准研究数据和分析显示,五分之一(21%)的组织实时了他们的数据。该研究还表明,这些组织通常对整合他们的数据都比较满意,并在他们的结果方面更加自信。诚然,数据湖包含原始信息,它可能需要更多的分析和操作,因为数据还没有清洗掉,但时间就是金钱,速度更快的访问往往会导致新的收入机会。在参与基准研究预测分析的一半参与者表示,他们的分析已经创造了新的收入机会。

由于认识到缺乏治理和管理工具,一些机构毫不犹豫地采用数据湖,而其他公司也在采用。在这个领域的供应商在此期间已经显现出他们的能力。有些公司,例如Informatica公司为了数据湖泊获得世界EDW数据治理能力。专家最新发布了一篇关于Informatica的大数据功能,称之为智能数据湖。其他厂商正在提高自己的EDW能力。InformationBuilders公司和Teradata公司在今年春天都公布了数据湖。此外,新兴的供应商特别专注于数据湖泊。PodiumData表示,其提供了一个“企业数据湖管理平台。”

那么采用数据湖安全吗?好了,就像你不知道如何游泳就不应该跳进湖中一样,如果你没有管理其信息的计划就不应该采用数据湖。数据湖可以充分利用大数据,并创建新的收入机会。而组织采用合适的工具和培训之后,那么数据湖可能值得一试。


本文作者:Harris编译

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
115 2
|
1月前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
80 1
|
1月前
|
存储 安全 大数据
|
4月前
|
存储 分布式计算 监控
揭秘阿里云EMR:如何巧妙降低你的数据湖成本,让大数据不再昂贵?
【8月更文挑战第26天】阿里云EMR是一种高效的大数据处理服务,助力企业优化数据湖的成本效益。它提供弹性计算资源,支持根据需求调整规模;兼容并优化了Hadoop、Spark等开源工具,提升性能同时降低资源消耗。借助DataWorks及Data Lake Formation等工具,EMR简化了数据湖构建与管理流程,实现了数据的统一化治理。此外,EMR还支持OSS、Table Store等多种存储选项,并配备监控优化工具,确保数据处理流程高效稳定。通过这些措施,EMR帮助企业显著降低了数据处理和存储成本。
147 3
|
4月前
|
存储 大数据 数据处理
Delta Lake革新浪潮:EMR中的数据湖守护者,如何重塑大数据生态?
【8月更文挑战第26天】Delta Lake是一款开源大数据处理框架,以数据版本控制和ACID事务特性著称,在大数据领域崭露头角。在阿里云EMR平台上,它为用户提供高效可靠的数据处理方式,通过结构化的存储、事务日志实现数据版本控制和回滚。Delta Lake在EMR中实现了ACID事务,简化数据湖操作流程,支持时间旅行查询历史数据版本,优化存储格式提高读取速度,这些优势使其在开源社区和企业界获得广泛认可。
58 2
|
4月前
|
分布式计算 大数据 数据处理
【大数据管理新纪元】EMR Delta Lake 与 DLF 深度集成:解锁企业级数据湖的无限潜能!
【8月更文挑战第26天】随着大数据技术的发展,Apache Spark已成为处理大规模数据集的首选工具。亚马逊的EMR服务简化了Spark集群的搭建和运行流程。结合使用Delta Lake(提供ACID事务保证和数据版本控制)与DLF(加强数据访问控制及管理),可以显著提升数据湖的可靠性和性能。本文通过一个电商公司的具体案例展示了如何在EMR上部署集成Delta Lake和DLF的环境,以及这一集成方案带来的几大优势:增强的可靠性、细粒度访问控制、性能优化以及易于管理的特性。这为数据工程师提供了一个高效且灵活的数据湖平台,简化了数据湖的建设和维护工作。
65 1
|
4月前
|
Java Spring 开发者
掌握Spring事务管理,打造无缝数据交互——实用技巧大公开!
【8月更文挑战第31天】在企业应用开发中,确保数据一致性和完整性至关重要。Spring框架提供了强大的事务管理机制,包括`@Transactional`注解和编程式事务管理,简化了事务处理。本文深入探讨Spring事务管理的基础知识与高级技巧,涵盖隔离级别、传播行为、超时时间等设置,并介绍如何使用`TransactionTemplate`和`PlatformTransactionManager`进行编程式事务管理。通过合理设计事务范围和选择合适的隔离级别,可以显著提高应用的稳定性和性能。掌握这些技巧,有助于开发者更好地应对复杂业务需求,提升应用质量和可靠性。
52 0
|
2月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
1月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
328 7