云端高性能技术架构浅析

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介:

无论是国外的Google、Facebook、Amazon,还是国内的Baidu、Taobao等,这些高性能的服务器在处理高并发的请求时,都能快速、准确的给予应答。通过查阅资料,了解现有大型网站的技术架构,发现目前常用的技术有分层、缓存、负载均衡、数据库性能优化,分布式系统等等。接下类分别对这些技术进行简单介绍。

1 分层与服务分离

无论OSI的7层网络结构,还是计算机底层硬件与上层软件之间的分层,甚至于Web领域大家非常熟悉的MVC开发模式,分层在计算机领域无处不在。分层可以将不同的功能部件独立起来,下层为上层提供访问接口,支撑上层的功能;上层调用下层接口来完成服务。

分层也是服务器端采用的一种方法,通过将数据库、文件资源等与应用服务器分开,可以缓解服务器压力。

另外,根据业务需求的不同,将明显没有交集的业务分开,独立成不同的模块单独进行管理,也可以在很大程度上提升服务器性能。

2 缓存

缓存在计算机很多地方都有涉及,比如在内存与硬盘之间增加Cache、增加IO缓冲区来缓解速度之间的不匹配。缓存的出现主要是依据计算机中著名的二八定律。缓存的技术主要包括本地缓存、分布式缓存、CDN和反向代理。

根据二八定律,80%的操作集中在20%的数据上。网站将常用的数据缓存在本地应用服务器中,以后直接通过缓存中的数据来响应用户的请求,而不用再去计算。这样就可以减少响应时间。

分布式缓存相比本地缓存速度要慢,因为应用服务器要访问专门的缓存服务器来获取数据,但是应用服务器主要用于处理请求,其自身内存有限,如果缓存大量数据,应用程序的运行速度将受到明显影响。因此很多大型网站都使用远程分布式缓存,部署大内存的服务器作为专门的缓存服务器。

缓存的另外两种表现形式是CDN和反向代理。不同的地方在于,CDN部署在网络提供商(比如电信、移动、联通等)的机房,用户在请求网站服务时,可以直接从网络提供商机房获取数据;而反向代理则部署在网站的中心机房,当用户的请求到中心机房后,首先访问的服务器是反向代理服务器,如果反向代理服务器中有相应资源的缓存,就将其直接返回给用户,而不用再去请求应用服务器。

3 负载均衡

负载均衡的原理就是去中心化。当用户并发请求量巨大时,如果将所有的请求都交给一个服务器去处理,很可能造成服务器宕机,即使能够正确响应,响应时间也可能会比较长,给用户造成不好的体验。

大型网站都是将一个域名绑定不同的服务器IP,这样表面上好像只有一台服务器在提供服务,实际则是一个服务器集群在提供相同的服务。负载均衡器接收所有用户的请求,再根据每台应用服务器正在处理的请求数量来对请求进行分配。这样就能在很大程度上提高系统的性能,同时扩展性也得到很大提升——当某台服务器宕机时,直接替换就可以,其它服务器继续相应用户请求;当用户请求量超过预定峰值时,也可以通过实时增加服务器来缓解压力。

4 数据库性能优化

使用缓存后,大部分的数据操作不需要通过数据库即可完成。但是仍有一部分读操作(缓存访问不命中,缓存过期)和全部的写操作需要访问数据库,在网站的用户达到一定规模时,数据库因为负载压力过高而成为网站的瓶颈。因而需要对数据库进行优化,常用的技术主要包括读写分离、结合非关系型数据库使用、分布式数据库等。

一般情况下,数据库读操作所需要的时间比写操作的要少很多,通过将数据库的读写操作分离可以明显改善数据库性能。目前很多大型网站都配置数据库主从关系,主数据库用于写操作并将数据同步更新到从数据库上,从数据库只负责读操作。例如,新浪云计算平台(SAE)给用户的数据库就进行了主从配置。

同时,可以利用非关系型数据库和搜索引擎对数据检索的优势,来减轻应用服务器直接访问关系型数据库的压力。

当对业务进行分离后,可以根据业务所涉及的数据,将数据库进行分库部署在不同的服务器上。

5 冗余

网站需要7x24小时连续运行,但是服务器随时可能出现故障,特别是服务器规模比较大时,出现某台服务器宕机是必然事件。要想保证在服务器宕机的情况下网站依然可以继续服务,不丢失数据,就需要一定程度的服务器冗余运行,数据冗余备份,这样当某台服务器宕机时,可以将其上的服务和数据转移到其它机器上继续运行。

接下来,我们主要针对缓存中的Memcached技术进行介绍。

1 Memcached

1.1 Memcached简介

Memcached是一个高性能的分布式对象缓存系统,用于动态Web应用,以减轻数据库负载[1]。它通过在内存中缓存数据和对象来减少应用程序读取数据库的次数,从而提高网站的性能。如图1是Memcached在网站中的位置示意图。

云端高性能技术架构浅析

图1 Memcached位置示意图

Memcached以键值对的形式将数据(或对象)缓存在内存中,虽然使用到了多个服务节点,但是和一般分布式缓存系统不同的是,每一份数据在Memcached中只存在一份,每个Memcached服务节点之间相互不可见。因此,Memcached中每份数据的键值是唯一的。

简而言之,Memcached类似于一个典型的非关系型存储系统,可以归入基于内容的键值对存储类型[2]。

1.2 Memcached工作原理

当高并发的外部请求访问服务器时,负载均衡服务器会根据各应用服务器的使用情况进行分配转发,如果需要对数据进行读取,应用服务器会按照一定的Hash算法计算键值的结果,并根据计算结果访问Memcached的某一个服务节点,服务节点再次计算键值的第二次Hash值,再根据计算结果对数据进行读取,如果缓存中有数据则直接返回给应用,否则需要从数据库获取数据,同时将获取到的数据写入到Memcached中[3]。

云端高性能技术架构浅析

图2 Memcached工作原理

2 性能分析

在本机上安装Memcached,客户端使用Memcached提供的接口进行数据的存储与访问,并与直接通过MySQL获取数据的方式进行对比。

2.1 Memcached安装

由于Memcached主要用于服务器端,而服务器端操作系统大多用Linux,因此网上多数教程是关于在Linux上安装使用Memcached的。在Windows上安装更加简单,只需找到对应操作系统的版本即可[4]。

安装Memcached后,打开服务即可使用相应功能,Memcached默认监听11211端口,如果是在本机上,直接使用127.0.0.1:11211就可以访问了,这点和MySQL非常类似。

Memcached提供了很多高级语言的接口,可以根据这些接口来完成对数据的存储与访问。

2.2 Memcached和MySQL性能比较

为了比较使用Memcached前后访问数据性能的情况,进行以下模拟实验。

硬件条件:

CPU:Intel Core 2.60GHz;

内存:2GB;

软件条件:

操作系统:Window 64;

Memcached最大内存:64MB;

Memcached最大连接数:1024。

MySQL中共有29120条记录,使用多线程模拟用户的并发访问,每个用户请求100次数据读取。表1是在用户数量为N的条件下,测试所有请求都处理完所用时间T的结果。

表1 测试结果

云端高性能技术架构浅析

三种方法说明:MySQL表示所有的数据请求直接通过访问数据库返回;随机Mem表示在增加了Memcached缓存后,对于每个用户的100次请求,数据之间没有任何关系,完全随机;二八定律Mem表示用户的请求遵循二八定律,就是说平均100次请求中,有比较多的次数访问的是相同数据,这个可以通过程序模拟,在访问时控制相应次数访问相同的数据。

图3、图4分别对应表1的两种数据表示。

云端高性能技术架构浅析

图3 柱状图显示结果

云端高性能技术架构浅析

图4 折线显示结果

由于在完全随机访问的条件下,数据的命中率非常低(几乎为0),每次请求都需要从数据库中获取,同时还要将请求到的数据保存在缓存中,因此效率比直接从数据库中获取还要低。但是当用户多次请求相同的数据是,使用Memcached 明显比直接从MySQL中获取效率要高很多。

整个测试过程还存在着一些不足之处:

  • 受实际条件限制,Memcached服务节点数只有1个;
  • 另外,数据库中数据量级也不是非常大;
  • 没有测试数据写入的情况

3 关键问题

通过上述分析可知,Memcached在一些条件下对提升数据访问效率有很大作用。对于那些不常变动访问频率又非常高的数据,将其放在缓存中,可以很好的缓解数据库的压力,进而提升系统性能。但同时,Memcached自身也还存在着一些不足之处:

由于Memcached是将数据缓存在内存中,当出现断电情况时,数据将立即消失;

所有数据在Memcached中只保存一份,因此可靠性不是很高,一旦某台服务节点出现故障,相应的数据将丢失;

Memcached在设计之初每个key的value最大是1MB,随着目前数据量的快速增长,缓存数据量大的文件,比如音频、视频等有很大不足。


本文作者:佚名

来源:51CTO

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
1月前
|
存储 缓存 安全
某鱼电商接口架构深度剖析:从稳定性到高性能的技术密码
某鱼电商接口架构揭秘:分层解耦、安全加固、性能优化三维设计,实现200ms内响应、故障率低于0.1%。详解三层架构、多引擎存储、异步发布、WebSocket通信与全链路防护,助力开发者突破电商接口“三难”困境。
|
5月前
|
运维 Kubernetes Cloud Native
智联招聘 × 阿里云 ACK One:云端弹性算力颠覆传统 IDC 架构,打造春招技术新范式
在 2025 年春季招聘季的激战中,智联招聘凭借阿里云 ACK One 注册集群与弹性 ACS 算力的深度融合,成功突破传统 IDC 机房的算力瓶颈,以云上弹性架构支撑千万级用户的高并发访问,实现招聘服务效率与稳定性的双重跃升。
|
4月前
|
消息中间件 负载均衡 中间件
⚡ 构建真正的高性能即时通讯服务:基于 Netty 集群的架构设计与实现
本文介绍了如何基于 Netty 构建分布式即时通讯集群。随着用户量增长,单体架构面临性能瓶颈,文章对比了三种集群方案:Nginx 负载均衡、注册中心服务发现与基于 ZooKeeper 的消息路由架构。最终选择第三种方案,通过 ZooKeeper 实现服务注册发现与消息路由,并结合 RabbitMQ 支持跨服务器消息广播。文中还详细讲解了 ZooKeeper 搭建、Netty 集群改造、动态端口分配、服务注册、负载均衡及消息广播的实现,构建了一个高可用、可水平扩展的即时通讯系统。
520 0
|
1月前
|
缓存 运维 监控
Redis 7.0 高性能缓存架构设计与优化
🌟蒋星熠Jaxonic,技术宇宙中的星际旅人。深耕Redis 7.0高性能缓存架构,探索函数化编程、多层缓存、集群优化与分片消息系统,用代码在二进制星河中谱写极客诗篇。
|
2月前
|
消息中间件 缓存 监控
中间件架构设计与实践:构建高性能分布式系统的核心基石
摘要 本文系统探讨了中间件技术及其在分布式系统中的核心价值。作者首先定义了中间件作为连接系统组件的"神经网络",强调其在数据传输、系统稳定性和扩展性中的关键作用。随后详细分类了中间件体系,包括通信中间件(如RabbitMQ/Kafka)、数据中间件(如Redis/MyCAT)等类型。文章重点剖析了消息中间件的实现机制,通过Spring Boot代码示例展示了消息生产者的完整实现,涵盖消息ID生成、持久化、批量发送及重试机制等关键技术点。最后,作者指出中间件架构设计对系统性能的决定性影响,
|
4月前
|
缓存 监控 数据安全/隐私保护
京东平台商品详情接口技术解密:高性能架构与实战经验
本文深入解析京东商品详情接口技术架构,涵盖微服务设计、多级缓存、异步加载及数据一致性保障等关键策略,分享高并发场景下的性能优化实践,助力电商系统稳定高效运行。
|
5月前
|
存储 关系型数据库 数据库
高性能云盘:一文解析RDS数据库存储架构升级
性能、成本、弹性,是客户实际使用数据库过程中关注的三个重要方面。RDS业界率先推出的高性能云盘(原通用云盘),是PaaS层和IaaS层的深度融合的技术最佳实践,通过使用不同的存储介质,为客户提供同时满足低成本、低延迟、高持久性的体验。
|
7月前
|
消息中间件 存储 设计模式
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
2640 21
RocketMQ原理—5.高可用+高并发+高性能架构
|
6月前
|
消息中间件 缓存 算法
分布式开发:数字时代的高性能架构革命-为什么要用分布式?优雅草卓伊凡
分布式开发:数字时代的高性能架构革命-为什么要用分布式?优雅草卓伊凡
333 0
分布式开发:数字时代的高性能架构革命-为什么要用分布式?优雅草卓伊凡
|
消息中间件 缓存 架构师
关于 Kafka 高性能架构,这篇说得最全面,建议收藏!
Kafka 是一个高吞吐量、高性能的消息中间件,关于 Kafka 高性能背后的实现,是大厂面试高频问题。本篇全面详解 Kafka 高性能背后的实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
关于 Kafka 高性能架构,这篇说得最全面,建议收藏!
下一篇
oss云网关配置