Hive、MapReduce、Spark分布式生成唯一数值型ID

简介:

在实际业务场景下,经常会遇到在Hive、MapReduce、Spark中需要生成唯一的数值型ID。

一般常用的做法有:

MapReduce中使用1个Reduce来生成;

Hive中使用row_number分析函数来生成,其实也是1个Reduce;

借助HBase或Redis或Zookeeper等其它框架的计数器来生成;

数据量不大的情况下,可以直接使用1和2方法来生成,但如果数据量巨大,1个Reduce处理起来就非常慢。

在数据量非常大的情况下,如果你仅仅需要唯一的数值型ID,注意:不是需要”连续的唯一的数值型ID”,那么可以考虑采用本文中介绍的方法,否则,请使用第3种方法来完成。

Spark中生成这样的非连续唯一数值型ID,非常简单,直接使用zipWithUniqueId()即可。

参考zipWithUniqueId()的方法,在MapReduce和Hive中,实现如下:

在Spark中,zipWithUniqueId是通过使用分区Index作为每个分区ID的开始值,在每个分区内,ID增长的步长为该RDD的分区数,那么在MapReduce和Hive中,也可以照此思路实现,Spark中的分区数,即为MapReduce中的Map数,Spark分区的Index,即为Map Task的ID。Map数,可以通过JobConf的getNumMapTasks(),而Map Task ID,可以通过参数mapred.task.id获取,格式如:attempt_1478926768563_0537_m_000004_0,截取m_000004_0中的4,再加1,作为该Map Task的ID起始值。注意:这两个只均需要在Job运行时才能获取。另外,从图中也可以看出,每个分区/Map Task中的数据量不是绝对一致的,因此,生成的ID不是连续的。

下面的UDF可以在Hive中直接使用:


 
 
  1. package com.lxw1234.hive.udf; 
  2.   
  3. import org.apache.hadoop.hive.ql.exec.MapredContext; 
  4. import org.apache.hadoop.hive.ql.exec.UDFArgumentException; 
  5. import org.apache.hadoop.hive.ql.metadata.HiveException; 
  6. import org.apache.hadoop.hive.ql.udf.UDFType; 
  7. import org.apache.hadoop.hive.ql.udf.generic.GenericUDF; 
  8. import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector; 
  9. import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory; 
  10. import org.apache.hadoop.io.LongWritable; 
  11.   
  12. @UDFType(deterministic = false, stateful = true
  13. public class RowSeq2 extends GenericUDF { 
  14.      
  15.     private static LongWritable result = new LongWritable(); 
  16.     private static final char SEPARATOR = '_'
  17.     private static final String ATTEMPT = "attempt"
  18.     private long initID = 0l; 
  19.     private int increment = 0; 
  20.      
  21.      
  22.     @Override 
  23.     public void configure(MapredContext context) { 
  24.         increment = context.getJobConf().getNumMapTasks(); 
  25.         if(increment == 0) { 
  26.             throw new IllegalArgumentException("mapred.map.tasks is zero"); 
  27.         } 
  28.          
  29.         initID = getInitId(context.getJobConf().get("mapred.task.id"),increment); 
  30.         if(initID == 0l) { 
  31.             throw new IllegalArgumentException("mapred.task.id"); 
  32.         } 
  33.          
  34.         System.out.println("initID : " + initID + "  increment : " + increment); 
  35.     } 
  36.      
  37.     @Override 
  38.     public ObjectInspector initialize(ObjectInspector[] arguments) 
  39.             throws UDFArgumentException { 
  40.         return PrimitiveObjectInspectorFactory.writableLongObjectInspector; 
  41.     } 
  42.   
  43.     @Override 
  44.     public Object evaluate(DeferredObject[] arguments) throws HiveException { 
  45.         result.set(getValue()); 
  46.         increment(increment); 
  47.         return result; 
  48.     } 
  49.      
  50.     @Override 
  51.     public String getDisplayString(String[] children) { 
  52.         return "RowSeq-func()"
  53.     } 
  54.      
  55.     private synchronized void increment(int incr) { 
  56.         initID += incr; 
  57.     } 
  58.      
  59.     private synchronized long getValue() { 
  60.         return initID; 
  61.     } 
  62.      
  63.     //attempt_1478926768563_0537_m_000004_0 // return 0+1 
  64.     private long getInitId (String taskAttemptIDstr,int numTasks) 
  65.             throws IllegalArgumentException { 
  66.         try { 
  67.             String[] parts = taskAttemptIDstr.split(Character.toString(SEPARATOR)); 
  68.             if(parts.length == 6) { 
  69.                 if(parts[0].equals(ATTEMPT)) { 
  70.                     if(!parts[3].equals("m") && !parts[3].equals("r")) { 
  71.                         throw new Exception(); 
  72.                     } 
  73.                     long result = Long.parseLong(parts[4]); 
  74.                     if(result >= numTasks) { //if taskid >= numtasks 
  75.                         throw new Exception("TaskAttemptId string : " + taskAttemptIDstr 
  76.                                 + "  parse ID [" + result + "] >= numTasks[" + numTasks + "] .."); 
  77.                     } 
  78.                     return result + 1; 
  79.                 } 
  80.             } 
  81.         } catch (Exception e) {} 
  82.         throw new IllegalArgumentException("TaskAttemptId string : " + taskAttemptIDstr 
  83.                 + " is not properly formed"); 
  84.     } 
  85.      
  86.   

有一张去重后的用户id(字符串类型)表,需要位每个用户id生成一个唯一的数值型seq:


 
 
  1. ADD jar file:///tmp/udf.jar; 
  2. CREATE temporary function seq2 as 'com.lxw1234.hive.udf.RowSeq2'
  3.   
  4. hive>> desc lxw_all_ids; 
  5. OK 
  6. id                      string                                       
  7. Time taken: 0.074 seconds, Fetched: 1 row(s) 
  8. hive> select * from lxw_all_ids limit 5; 
  9. OK 
  10. 01779E7A06ABF5565A4982_cookie 
  11. 031E2D2408C29556420255_cookie 
  12. 03371ADA0B6E405806FFCD_cookie 
  13. 0517C4B701BC1256BFF6EC_cookie 
  14. 05F12ADE0E880455931C1A_cookie 
  15. Time taken: 0.215 seconds, Fetched: 5 row(s) 
  16. hive> select count(1) from lxw_all_ids; 
  17. 253402337 
  18.   
  19. hive> create table lxw_all_ids2 as select id,seq2() as seq from lxw_all_ids; 
  20. … 
  21. Hadoop job information for Stage-1: number of mappers: 27; number of reducers: 0 
  22. … 
  23.   
  24.   
  25.   

该Job使用了27个Map Task,没有使用Reduce,那么将会产生27个结果文件。

再看结果表中的数据:


 
 
  1. hive> select * from lxw_all_ids2 limit 10; 
  2. OK 
  3. 766CA2770527B257D332AA_cookie   1 
  4. 5A0492DB0000C557A81383_cookie   28 
  5. 8C06A5770F176E58301EEF_cookie   55 
  6. 6498F47B0BCAFE5842B83A_cookie   82 
  7. 6DA33CB709A23758428A44_cookie   109 
  8. B766347B0D27925842AC2D_cookie   136 
  9. 5794357B050C99584251AC_cookie   163 
  10. 81D67A7B011BEA5842776C_cookie   190 
  11. 9D2F8EB40AEA525792347D_cookie   217 
  12. BD21077B09F9E25844D2C1_cookie   244 
  13.   
  14. hive> select count(1),count(distinct seq) from lxw_all_ids2; 
  15. 253402337       253402337 
  16.   

limit 10只从第一个结果文件,即MapTaskId为0的结果文件中拿了10条,这个Map中,start=1,increment=27,因此生成的ID如上所示。

count(1),count(distinct seq)的值相同,说明seq没有重复值,你可以试试max(seq),结果必然大于253402337,说明seq是”非连续唯一数值型ID“.


本文作者:佚名

来源:51CTO

相关文章
|
3月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
100 2
|
3月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
91 0
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
153 0
|
6月前
|
SQL 分布式计算 Java
E-MapReduce Serverless Spark体验评测
从了解到部署实践,全方位带你体验大数据平台EMR Serverless Spark的魅力。
338 7
E-MapReduce Serverless Spark体验评测
|
6月前
|
分布式计算 监控 Serverless
E-MapReduce Serverless Spark 版测评
E-MapReduce Serverless Spark 版测评
11615 10
|
6月前
|
分布式计算 Serverless Spark
【开发者评测】E-MapReduce Serverless Spark获奖名单
E-MapReduce Serverless Spark获奖名单正式公布!
194 1
|
6月前
|
分布式计算 运维 Serverless
E-MapReduce Serverless Spark开发者评测
**EMR Serverless Spark测评概要** - 弹性处理大规模用户行为分析,提升产品优化与推荐精度。 - 相比自建Spark集群,EMR Serverless Spark展现更高稳定性、性能,降低成本,简化运维。 - 支持多种数据源,提供Spark SQL与DataFrame API,自动资源调度,适用于波动需求。 - 文档清晰,但可增强特定场景指导与故障排查。 - 建议优化监控、调度算法,增加内置分析工具,并强化与其他阿里云产品(如MaxCompute, DataWorks, QuickBI)的联动。 - 全托管服务减轻运维负担,但资源管理、查询效率与兼容性仍有提升空间。
93 1
|
7月前
|
SQL 分布式计算 关系型数据库
分布式系统详解 -- Hive1.2.1 安装
分布式系统详解 -- Hive1.2.1 安装
90 1
|
7月前
|
SQL 分布式计算 HIVE
实时计算 Flink版产品使用问题之同步到Hudi的数据是否可以被Hive或Spark直接读取
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
分布式计算 运维 Serverless
E-MapReduce Serverless Spark 评测
EMR Serverless Spark服务对比传统引擎和自建集群展现高稳定性和性能,自动化运维降低成本。其敏捷性、自动扩缩容和阿里云生态集成提升了开发效率。不过,监控预警、资源调度和工具集扩展是潜在改进点。该服务可与MaxCompute、DataWorks、Quick BI联动,实现数据处理、管理、可视化一站式解决方案。
86 0