TensorFlow 1.0 正式发布 你需要知道的都在这里

简介:

谷歌表示,仅仅在发布的第一年里,TensorFlow 就帮助研究人员、工程师、艺术家、学生以及其他行业人员取得了巨大研究进展。这包括机器翻译、早期皮肤癌检测、防止糖尿病失明并发症等诸多领域。如今,TensorFlow 被用于逾 6000 个开源资源库,谷歌研究人员对此感到十分欣喜。

昨晚谷歌在山景城举办了第一届 TensorFlow 开发者峰会。作为大会的一部分,TensorFlow 1.0 的正式版本被发布出来。一起来看看它都有哪些新特性:

TensorFlow 1.0 正式发布 你需要知道的都在这里

更快

  • 它运算更快——TensorFlow 1.0 有十分惊人的速度。它快到什么程度呢?据谷歌表示,在使用八个 GPU 的情况下,TensorFlow 1.0 在 Inception v3 的测试中有 7.3 倍的速度提升。在 64 个分布式 GPU 集群上运行,Inception v3 的跑分增加了 58 倍。

    不仅如此,XLA(Accelerated Linear Algebra,即加速线性代数) 还为未来进一步的性能提升打下了基础。TensorFlow 的官方网站 tensorflow.org,也上线了官方使用指南和秘诀,以帮助开发者对模型进行调参,达到最大的训练速度。另外,雷锋网(公众号:雷锋网)获知,谷歌将发布针对几大主流模型的实践指导(更新版本),为如何最大化利用 TensorFlow 1.0 提供指导,相信不久之后就可以看到。

更灵活

  • 它更加灵活—— TensorFlow 1.0 加入了新的高级别 API,还有 tf.layers, tf.metrics, and tf.losses 模块。非常关键的是,谷歌宣布 TensorFlow 1.0 内置了新的 tf.keras 模块——后者使得 TensorFlow 为 Keras 提供“完全”兼容支持。这在之前就传出过风声。作为一个在 ML 开发者当中广为流传的神经网络库,Keras 的加入无疑让 Tensorflow 的使用变得更加便利。

更稳定

  • 更适合商业化使用——TensorFlow 加强了 Python API 的稳定性。这使得为它加入新特征变得更加容易,而不需要推翻已有的代码。

TensorFlow 1.0 的其他关键升级:

  • Python API 被修改得更像 NumPy。与此同时,在一定程度上牺牲了向后兼容性,以最大化 API 的稳定性。具体有哪些改变、哪些兼容性牺牲请见谷歌指南。

  • 针对 Java 和 Go 的试验性 API。TensorFlow 距离完全支持 Java 更近一步。

  • 高级别 API 模块: tf.layers、tf.metrics、和 tf.losses——在整合 skflow 和 TF Slim 之后,从 tf.contrib.learn 移植过来。

  • 对 XLA 试验性的发布。 XLA 是一个应用领域高度聚焦的 TensorFlow 图编译器,可运行于 CPU 和 GPU。雷锋网获知,谷歌的 XLA 研究进度极快。我们可以期待未来的 TensorFlow 版本配备更完善、更强大的 XLA。

  • 加入了 TensorFlow Debuggerr (tfdbg)。这是一个命令行界面兼 API,用于修复实时 TensorFlow 程序的漏洞

  • 针对物体检测和定位的新安卓 demo(展示),还有基于摄像头的图像风格化。

  • 安装改进:加入了 Python 3 的 docker 图标。TensorFlow 的 pip 包变得兼容 PyPI。这意味着 可以用 pip 简便地安装 TensorFlow。

谷歌大神 Jeff Dean 在发言中表示,看到全世界 TensorFlow 社区以如此惊人得速度发展十分激动。TensorFlow 1.0 正式发布 你需要知道的都在这里

TensorFlow 1.0 正式发布 你需要知道的都在这里

TensorFlow 生态在不断增长,这伴随着新技术的加入——比如用于动态批处理的 TensorFlow Fold,类似 Embedding Projector 的工具,以及对已有工具的更新,比如 TensorFlow Serving。

Youtube 发布会全程视频:https://www.youtube.com/watch?v=LqLyrl-agOw

精华视频:https://www.youtube.com/watch?v=4n1AHvDvVvw






本文作者:三川
本文转自雷锋网禁止二次转载, 原文链接
目录
相关文章
|
8月前
|
TensorFlow 算法框架/工具
第2章 TensorFlow 基础
第2章 TensorFlow 基础
54 0
|
8月前
|
机器学习/深度学习 存储 TensorFlow
TensorFlow 基础实战
TensorFlow 基础实战
|
5月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
TensorFlow2基础
【8月更文挑战第10天】TensorFlow2基础。
57 12
|
5月前
|
人工智能 TensorFlow API
TensorFlow简介
【8月更文挑战第7天】TensorFlow简介。
109 3
|
6月前
|
机器学习/深度学习 TensorFlow API
TensorFlow基础介绍
【7月更文挑战第3天】TensorFlow基础介绍。
37 1
|
8月前
|
TensorFlow 算法框架/工具
TensorFlow基础
TensorFlow基础
50 0
|
TensorFlow 算法框架/工具 异构计算
tensorflow-gpu-2.3.1安装 tensorflow安装 GPU版本tensorflow安装 tensorflow搭建
tensorflow-gpu-2.3.1安装 tensorflow安装 GPU版本tensorflow安装 tensorflow搭建
514 0
|
机器学习/深度学习 TensorFlow API
TensorFlow 2.0 概述
在本文中将介绍与我的毕设论文演示案例相关的TensorFlow的一些基础知识,包括张量、计算图、操作、数据类型和维度以及模型的保存,接着在第二部分,本文将介绍演示案例代码中用到的一些TensorFlow 2.0中的高阶API,代码中不会涉及像TensorFlow 1.x版本中的Session等一些较为复杂的东西,所有的代码都是基于高阶API中的tf.keras.models来构建的(具体模型构建使用Sequential按层顺序构建),可以大大的方便读者更好的理解代码。
|
TensorFlow 算法框架/工具 Python
tensorflow环境准备
tensorflow环境准备
136 0
tensorflow环境准备
|
机器学习/深度学习 人工智能 PyTorch
TensorFlow 三周岁!2.0 版本将于 2019 年发布
发展至今,我们见证了 TensorFlow 一次次重大改进。在它三岁生日之际,谷歌也将其发展过程中比较重要的时间节点进行了整理。
286 0