大数据时代,如何利用数据来提升设计?

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:
什么是数据?

我们需要不拘一格的自主权,和我们考虑的数据一样。对我们来说,这不仅仅是数字,在我们看似平常的一些数据,甚至能让传统数据科学家屈服。

举个例子,社交软件注册时需要询问新用户用一些形容词(标签)来描述他们的个性,传统的分析师可能不喜欢这样的数据,因为他们不容易量化。但对设计师来说,这些数据可以避免做一些无用功。

理解好“为什么”才能让我们创造更佳的用户体验。

毕竟,我们经常面临各种各样的挑战,因此我们拥有艺术和科学数据分析方面转变思维的权利。

有2类主要数据是我们考虑的方向:

定量数据(Quantitative data)定性数据(Qualitative data)定量数据(Quantitative data)

大数据!数字!图表和图形!

简单地说,定量数据是关于“谁(Who)”、“什么时候(When)”、“什么(What)”和“在哪里(Where)”的数值数据。

思考Google Analytics(著名互联网公司Google为网站提供的数据统计服务),思考人口统计分析数据。

这种类型的信息是与设计师高度相关的,归根结底,了解用户是开始设计前 要做的先行步骤,这至少也能解决一个问题。

定性数据(Qualitative data)

定性数据最好的定义为非数字信息,是关于“如何(How)”和“为什么(Why)”。

用户为什么会选择你的产品?他们是怎么使用的呢?用户如何感知你的产品?

定性数据是更难想象得到的,但它仍然可以在你的设计过程中发挥关键作用。例如,只要看看微博的热门话题,就能轻松找到能够用户关注的范围广度,并挖掘任何你想要的关键字。

 

知道了大家关注什么这就是非常棒的信息,但是想象一下他们为什么会关注这些话题,以及对我们又有什么帮助,或者更好的是:如何才能更加满足他们?

理解好“为什么”能让我们为用户创造更多的参与体验,从而增加我们的产品或服务的整体价值。

不要只在意数据,心里还要有一个特定的目标。

如何在设计中充分利用数据

现在,我们已经掌握了一些对我们设计师有用的数据,让我们谈谈如何实际利用数据来完成目标和取悦用户。

以一个问题开始

数据在外行看了似乎势不可挡。谁没有在Google Analytics迷失或晕头转向过?如果你带着特定的目标去挖掘相关信息,你会很容易得到,原来还有这么迷人的东西可以看!

 

要专注于你的思绪,以一个问题开始数据分析。你渴望找到什么?千万不要只着眼于看看数据,在脑海中要先有一个明确的目标。

我发现我经常问的几个问题:

是什么影响了新登录页面的跳出率?如何改变banner影响转化率?用户在百度输入了什么关键词进而访问了我的网站?哪种loading pages最流畅?

你怎么处理这些数据将取决于许多因素,以最后一个问题作为一个例子,很容易知道并怎样把这个应用到我们的设计决策中。

我们可以更好的确定我们的用户希望看到在我们的网站,什么样的图片和消息传递能真正和他们建立联系,以及如何在其他着陆页面强调我们的价值。

用真实数据建立模型

设计师经常用“完美”在数据模型中造假,如:

一行文字的正确长度,通常是根据设计师在脑海中的印象;一个数字可能很棒很全面了,但现场输入却包含小数点;通过精心的编辑和合成图像的裁切来达到理想的比例。

现实世界是不完美的,所以要结合真实的数据来设计,并且要知道当我们在建立数据模型时难免会遇到一些麻烦。

当设计师在模型中使用真实数据时,不得不面对同样的现实问题,意味着将会被最终设计结果和管理决策约束。

例如,假设你在设计一个新闻app,你可能会设计成2条3排以上的新闻实体模型,你想要的是不需要点击就能看完整片段的新闻。

在你的模型里,每条新闻的段数刚好,并且拥有6个小片段。注意:这样只能用作填充并适合你想要的设计布局。

当你去现实世界中测试它时,你会发现,你的布局看起来完全不一样,一些新闻由于不同的长度会撞到下面的折叠处。

你可以正确地推断,在app中这种冲突可能随时出现各种变量,如果不使用真正的客户数据,可能经常会遇到一些严重的格式错误,这会很伤害用户体验。

这就是为什么在设计过程中考虑实际数据是如此重要的原因,采用这种方法迫使设计师在建设实际产品的过程中能够理解最终用户。

你要做的最后一件事就是确保app或网站设计接近完成时不会在遇到意外,这样你辛辛苦苦的设计才能更加实用和完美。

A / B测试(A/B testing)

A/B测试是将数据分析应用到设计实践中的最有效方法。

 

Netflix是一家美国的在线影片租赁提供商,Netflix已经连续五次被评为顾客最满意的网站。Netflix通过a/b测试,用户在以不同角色登入网站时出现不同的页面。

你有转变成不同角色的用户来使用你的产品吗?假如电商网站的价格用绿色替代红色会做得更好吗?登陆页面的布局是怎么样的?

A/B测试是检验这些的最简单方法,这是一个简单的过程,在你运行测试中需要非常频繁使用的。

在同等条件下,用A/B测试法简单地改变同一个页面或app中的某个元素,并留下相同的,然后你分别测试两种情况,并得出相关的一些KPI指标。

A/B测试应该作为设计过程的一部分,完成第一个版本的设计将不再是最后一个步骤,你应该经常用你的设计做些数据测试!记住,我们要让数据而不是直觉来指导我们的决策。

语意差异调查

这是很难量化的东西,如“情绪”,但如果我们要创造真正令人难忘的用户体验少不了做这方面的工作。让用户填写调查问卷可以说是颇具有挑战性的,但提供的见解也是很有意义的。

如何让他们认真填写调查问卷可能取决于你特定的用户或者你与他们的关系怎样,但在一般情况下,我会建议你主要还是用常用的社交软件(如微信,QQ)去做这件事(国外通行用邮件通讯交流,我们国内主要用微信或者QQ)。

用社交软件开展问卷调查是能想到的最常用方法,并且有很好的理由,微信或QQ的参与度一般比其他渠道高得多,这是获得参与者注意的最简单而廉价的方式。

如果得不到反馈,可以考虑在填完问卷后给予一些奖励、奖赏措施,至少也要表达真诚的感谢,并引导到问卷中,充分解释这份问卷的重要性,以及你和你的团队是多么渴望得到他们的反馈意见。

回到主题,一个语意差异调查的目标是简单的:你提出了多个选项,并要求参与者对各种描述形容词的做出真实的选择,这些如果做好了会非常有效。

如果你要做一个标准的调查,问:

你认为你的经理是一个公平的人吗?

你问题中使用的形容词将会被参与者预先感觉到一种特定的方式。

另一方面,你可以尝试对问题进行一个更开放式的演示。如这样地:

 

以这种方式看待它,没有任何意义或臆断被传达,这里的目标是获得一个人 对主题的真实想法。

你可以进一步采取这个步骤,并删除一个中立的答案选项。这可能会迫使一些选择一个侧面,让你获得更深入的答案。

一款app的相关问题几乎是无止境的,你可以根据实际情况和需求从任何方向进行摸底。

也许你想得到访问者对主要登陆页面的意见;也许你想知道当用户第一次访问的内容要收费会有怎样的感想;或者,也许你想知道用户是否在通过点击“购买”的过程中受到某种引导。

你的产品注册流程的设计是否让他们参与进来了?为什么人们会从你的购物车中退出?当他们做这些的时候,他们的情绪是怎样的?

这些都是我们可以通过语意差调查来解决的问题。尝试着这样做调查,你会为得到的反馈结果而感到惊讶,以及知道如何更好地了解用户。

原文作者:Sam Warren

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
2月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
192 14
|
4月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
167 4
|
3月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
153 0
|
4月前
|
分布式计算 DataWorks 数据处理
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
297 3
|
4月前
|
SQL 人工智能 分布式计算
ODPS:数据浪潮中的成长与突围
本文讲述了作者在大数据浪潮中,通过引入阿里云ODPS体系(包括MaxCompute、DataWorks、Hologres)解决数据处理瓶颈、实现业务突破与个人成长的故事。从被海量数据困扰到构建“离线+实时”数据架构,ODPS不仅提升了数据处理效率,更推动了技术能力与业务影响力的双重跃迁。
|
2月前
|
传感器 人工智能 监控
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
142 14
|
1月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
2月前
|
机器学习/深度学习 传感器 监控
吃得安心靠数据?聊聊用大数据盯紧咱们的餐桌安全
吃得安心靠数据?聊聊用大数据盯紧咱们的餐桌安全
118 1
|
2月前
|
数据采集 自动驾驶 机器人
数据喂得好,机器人才能学得快:大数据对智能机器人训练的真正影响
数据喂得好,机器人才能学得快:大数据对智能机器人训练的真正影响
211 1
|
4月前
|
SQL 人工智能 分布式计算
在数据浪潮中前行:我与ODPS的实践、思考与展望
在数据驱动决策的时代,企业如何高效处理海量数据成为数字化转型关键。本文结合作者实践,深入解析阿里云自研大数据平台 ODPS 的技术优势与应用场景,涵盖 MaxCompute、DataWorks、Hologres 等核心产品,分享从数据治理到实时分析的落地经验,并展望其在 AI 与向量数据时代的发展前景。
232 70

热门文章

最新文章