AudioX:颠覆创作!多模态AI一键生成电影级音效+配乐,耳朵的终极盛宴

本文涉及的产品
图像搜索,任选一个服务类型 1个月
简介: AudioX 是香港科技大学和月之暗面联合推出的扩散变换器模型,能够从文本、视频、图像等多种模态生成高质量音频和音乐,具备强大的跨模态学习能力和泛化能力。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🎬 「百万剪辑师失业警告!这个AI把文字直接「听」成好莱坞大片」

大家好,我是蚝油菜花。你是否经历过这些创作噩梦:

  • 👉 熬夜剪完视频却发现配乐违和,甲方爸爸秒变咆哮帝
  • 👉 想给vlog加雨声却找到全是罐头音效,氛围感碎成二维码
  • 👉 写好的广告脚本卡在背景音乐,试听200首依旧不对味...

今天要炸场的 港科大AudioX ,堪称声音界的"万能打印机"!这个由顶尖实验室打造的AI音效引擎,只需任意输入文字/图片/视频,就能:

  • 秒级生成电影级环境音(连「火星沙暴中的机械心跳声」都能造)
  • 智能匹配视频节奏生成BGM(自动对齐画面转折点)
  • 史诗级音乐续写(给段旋律就能生成完整交响乐)

更疯狂的是,它采用军方级别的扩散模型,生成的24bit/96kHz音频让专业声卡都颤抖!下个爆款视频的声音设计,可能就差你5分钟的体验——文末奉上保姆级教程,让你的创作从此「声」入人心!

🚀 快速阅读

AudioX 是一款基于扩散变换器的多模态音频生成模型。

  1. 核心功能:支持文本、视频、图像等多种模态输入,生成高质量音频和音乐。
  2. 技术原理:采用扩散模型和多模态掩码训练策略,增强跨模态表示能力。

AudioX 是什么

AudioX-teaser

AudioX 是香港科技大学和月之暗面联合提出的统一扩散变压器模型,专门用于从任意内容生成音频和音乐。模型能处理多种输入模态,包括文本、视频、图像、音乐和音频,生成高质量的音频输出。

核心创新在于多模态掩码训练策略,通过随机掩码输入模态,迫使模型从不完整的输入中学习,增强跨模态表示能力。这种策略不仅提高了模型的鲁棒性,还使其在多种任务中表现出色。

AudioX 的主要功能

  • 文本到音频(Text-to-Audio):根据文本描述生成相应的音效。例如,输入“狗吠声”,模型可以生成狗吠的音频。
  • 视频到音频(Video-to-Audio):根据视频内容生成与之匹配的音效。例如,输入一个汽车行驶的视频,模型可以生成汽车发动机的声音。
  • 图像到音频(Image-to-Audio):根据图像内容生成相应的音效。例如,输入一张暴风雨的图片,模型可以生成暴风雨的声音。
  • 音乐生成(Music Generation):根据文本描述或视频内容生成音乐。例如,输入“轻松的钢琴曲”,模型可以生成一段轻松的钢琴音乐。
  • 音频修复(Audio Inpainting):根据上下文信息修复音频中的缺失部分。例如,输入一段有空白的音频,模型可以填补空白部分,使音频完整。
  • 音乐补全(Music Completion):根据给定的音乐片段生成后续部分。例如,输入一段音乐的开头,模型可以生成后续的音乐片段。
  • 高质量音频生成:AudioX 使用扩散模型(Diffusion Model)技术,能生成高质量、高保真的音频和音乐,确保生成的音频在音质和细节上接近真实音频。
  • 灵活的自然语言控制:用户可以通过自然语言描述来精确控制生成的音频内容。例如,用户可以指定音效的类型、音乐的风格、乐器的使用等,使生成的音频更符合需求。
  • 跨模态学习能力:AudioX 能处理多种模态的输入,将它们有效整合,生成与输入条件一致的音频。例如,同时输入文本和视频,模型可以综合考虑两者的语义信息,生成更贴合场景的音频。
  • 强大的泛化能力:在多个数据集和任务上表现出色,包括 AudioCaps、VGGSound、MusicCaps、V2M-bench 等,证明了其在不同场景下的泛化能力和适应性。
  • 零样本生成能力:没有针对特定模态(如图像)的专门训练,AudioX 能在零样本条件下生成高质量的音频,展示了强大的通用生成能力。

AudioX 的技术原理

AudioX-method

  • 扩散模型(Diffusion Model):AudioX 使用扩散模型的核心思想,将输入数据逐步添加噪声,然后通过一个逆向过程逐步去除噪声,最终生成高质量的音频或音乐。
    • 前向扩散过程:将输入数据逐步添加高斯噪声,生成一系列含噪的潜变量。
    • 反向去噪过程:通过训练一个去噪网络(通常是一个 Transformer),逐步去除噪声,重建干净的音频数据。
  • 多模态掩码训练策略:为了增强模型的跨模态学习能力,AudioX 采用了多模态掩码训练策略。在训练过程中,模型会随机掩码部分输入模态,迫使模型从不完整的输入中学习,提高模型的鲁棒性和泛化能力。
  • 多模态编码器和解码器:AudioX 集成了多种专用编码器,分别处理不同模态的输入数据,然后将这些编码后的特征融合到一个统一的潜空间中。
    • 视频编码器:使用 CLIP-ViT-B/32 提取视频帧的特征。
    • 文本编码器:使用 T5-base 提取文本的特征。
    • 音频编码器:使用自编码器提取音频的特征。
    • 特征融合:将不同模态的特征通过线性变换和连接操作融合到一个统一的多模态嵌入向量中。
  • 扩散过程中的条件嵌入:在扩散过程中,多模态嵌入向量作为条件输入,帮助模型生成与输入条件一致的音频或音乐。将融合后的多模态特征与扩散时间步一起输入到扩散模型中。通过逐步去除噪声,生成与输入条件匹配的高质量音频或音乐。
  • 数据集和训练:为了训练 AudioX,研究人员构建了两个大规模的多模态数据集:vggsound-caps,基于 VGGSound 数据集,包含 190K 音频字幕。V2M-caps,基于 V2M 数据集,包含 600 万音乐字幕。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

目录
打赏
0
34
36
2
349
分享
相关文章
Agent TARS:一键让AI托管电脑!字节开源PC端多模态AI助手,无缝集成浏览器与系统操作
Agent TARS 是一款开源的多模态AI助手,能够通过视觉解析网页并无缝集成命令行和文件系统,帮助用户高效完成复杂任务。
2167 3
Agent TARS:一键让AI托管电脑!字节开源PC端多模态AI助手,无缝集成浏览器与系统操作
MM-StoryAgent:交大阿里联合开源!多模态AI一键生成儿童故事绘本+配音
MM-StoryAgent 是上海交通大学与阿里巴巴联合推出的开源多模态、多智能体框架,用于生成沉浸式的有声故事绘本视频,支持文本、图像、语音等多种模态的生成与对齐。
101 7
MM-StoryAgent:交大阿里联合开源!多模态AI一键生成儿童故事绘本+配音
一键部署谷歌最新开源多模态AI模型 Gemma 3:单GPU性能碾压Llama!支持35+种语言
Gemma 3 是谷歌最新推出的开源多模态AI模型,支持超过35种语言,具备文本、图像及短视频处理能力,提供四种模型尺寸,优化单GPU性能,适用于多种AI应用场景。
263 8
一键部署谷歌最新开源多模态AI模型 Gemma 3:单GPU性能碾压Llama!支持35+种语言
OmniAlign-V:20万高质量多模态数据集开源,让AI模型真正对齐人类偏好
OmniAlign-V 是由上海交通大学、上海AI Lab等机构联合推出的高质量多模态数据集,旨在提升多模态大语言模型与人类偏好的对齐能力。该数据集包含约20万个多模态训练样本,涵盖自然图像和信息图表,结合开放式问答对,支持知识问答、推理任务和创造性任务。
67 10
OmniAlign-V:20万高质量多模态数据集开源,让AI模型真正对齐人类偏好
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
MILS 是 Meta AI 推出的零样本生成高质量多模态描述方法,支持图像、视频和音频的描述生成,无需额外训练。
146 34
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
CLaMP 3:音乐搜索AI革命!多模态AI能听懂乐谱/MIDI/音频,用27国语言搜索全球音乐
CLaMP 3是由清华大学团队开发的多模态、多语言音乐信息检索框架,支持27种语言,能够进行跨模态音乐检索、零样本分类和音乐推荐等任务。
69 1
CLaMP 3:音乐搜索AI革命!多模态AI能听懂乐谱/MIDI/音频,用27国语言搜索全球音乐
算法系统协同优化,vivo与港中文推出BlueLM-V-3B,手机秒变多模态AI专家
BlueLM-V-3B是由vivo与香港中文大学共同研发的多模态大型语言模型,专为移动设备优化。它通过算法和系统协同优化,实现了高效部署和快速生成速度(24.4 token/s),并在OpenCompass基准测试中取得优异成绩(66.1分)。模型小巧,语言部分含27亿参数,视觉编码器含4000万参数,适合移动设备使用。尽管如此,低端设备可能仍面临资源压力,实际应用效果需进一步验证。论文链接:https://arxiv.org/abs/2411.10640。
43 9
PySpur:零代码构建AI工作流!开源可视化拖拽平台,支持多模态与RAG技术
PySpur 是一款开源的轻量级可视化 AI 智能体工作流构建器,支持拖拽式界面,帮助用户快速构建、测试和迭代 AI 工作流,无需编写复杂代码。它支持多模态数据处理、RAG 技术、文件上传、结构化输出等功能,适合非技术背景的用户和开发者快速上手。
181 5
阿里云通义千问发布多款AI大模型 多模态、长文本能力全面升级!
阿里云通义千问发布多款AI大模型 多模态、长文本能力全面升级!
Pipecat实战:5步快速构建语音与AI整合项目,创建你的第一个多模态语音 AI 助手
Pipecat 是一个开源的 Python 框架,专注于构建语音和多模态对话代理,支持与多种 AI 服务集成,提供实时处理能力,适用于语音助手、企业服务等场景。
187 23
Pipecat实战:5步快速构建语音与AI整合项目,创建你的第一个多模态语音 AI 助手

热门文章

最新文章