魔搭社区每周速递(11.24-11.30)

简介: 魔搭ModelScope本期社区进展:1361个模型,29个数据集,44个创新应用,5 篇内容

image.png

🙋魔搭ModelScope本期社区进展:

📟1361个模型:GLM-Edge系列、通义千问QwQ、Marco-o1、MagicQuill-models、Qwen2vl-Flux等;

📁29个数据集:DAVIS-Edit、modjumlu等;

🎨44个创新应用超好用P图神器MagicQuill、logo任意贴、QwQ-32B-preview、Marco-o1等;

📄 5 篇内容:

  • 智谱开源端侧大语言和多模态模型GLM-Edge系列!
  • 千问团队开源会思考的QwQ模型,这模型成精了!
  • 从 OpenAI-o1 看大模型的复杂推理能力
  • 探索面向开放型问题的推理模型Marco-o1,阿里国际AI团队最新开源!
  • MagicQuill:4天斩获千颗 Star,登上Huggingface趋势榜榜首的AI P图神器

01.精选模型

GLM-Edge系列

GLM-Edge系列是智谱开源的面向端侧真实落地使用的场景下的一次尝试,由两种尺寸的大语言对话模型和多模态理解模型组成(GLM-Edge-1.5B-Chat,GLM-Edge-4B-Chat,GLM-Edge-V-2B,GLM-Edge-V-5B)。其中,1.5B / 2B模型主要面向手机、车机等平台, 4B / 5B 模型主要面向PC等平台。

模型合集:

https://modelscope.cn/collections/GLM-Edge-ff0306563d2844

示例代码:

安装源代码的transformers库

pip install git+https://github.com/huggingface/transformers.git

大语言模型推理

from modelscope import AutoModelForCausalLM, AutoTokenizer
MODEL_PATH = "ZhipuAI/glm-edge-4b-chat"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto")
message = [{"role": "user", "content": "hello!"}]
inputs = tokenizer.apply_chat_template(
    message,
    return_tensors="pt",
    add_generation_prompt=True,
    return_dict=True,
).to(model.device)
generate_kwargs = {
    "input_ids": inputs["input_ids"],
    "attention_mask": inputs["attention_mask"],
    "max_new_tokens": 128,
    "do_sample": False,
}
out = model.generate(**generate_kwargs)
print(tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True))

多模态模型推理

import torch
from PIL import Image
from modelscope import snapshot_download
from transformers import (
    AutoTokenizer,
    AutoImageProcessor,
    AutoModelForCausalLM,
)
url = "example.png"
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "describe this image"}]}]
image = Image.open(url)
model_dir = snapshot_download("ZhipuAI/glm-edge-v-5b")
processor = AutoImageProcessor.from_pretrained(model_dir, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_dir,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True,
)
inputs = tokenizer.apply_chat_template(
    messages, add_generation_prompt=True, return_dict=True, tokenize=True, return_tensors="pt"
).to(next(model.parameters()).device)
generate_kwargs = {
    **inputs,
    "pixel_values": torch.tensor(processor(image).pixel_values).to(next(model.parameters()).device),
}
output = model.generate(**generate_kwargs, max_new_tokens=100)
print(tokenizer.decode(output[0][len(inputs["input_ids"][0]):], skip_special_tokens=True))

更多推理、微调应用详见:

智谱开源端侧大语言和多模态模型GLM-Edge系列!

QwQ-32B-Preview

QwQ-32B-Preview 是由 Qwen 团队开发的实验性研究模型,专注于增强 AI 推理能力,在数学和编程领域表现出色,具体表现如下:

  • GPQA:65.2%,展示了研究生水平的科学推理能力
  • AIME:50.0%,证明了强大的数学问题解决技能
  • MATH-500:90.6%,体现了在各类数学主题上的全面理解
  • LiveCodeBench:50.0%,验证了在实际编程场景中的出色表现

模型链接:

https://modelscope.cn/models/Qwen/QwQ-32B-Preview

示例代码:

from modelscope import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/QwQ-32B-Preview"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r in strawberry."
messages = [
    {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

更多体验玩法详见:

千问团队开源会思考的QwQ模型,这模型成精了!

Marco-o1

阿里国际AI团队发布了最新的Marco-o1模型,Marco-o1不仅关注具有标准答案的学科(例如代码、数学等)领域,而且更加强调开放式问题的解决方案。Marco-o1模型通过超长CoT数据微调,增强了反思和改正能力。它利用MCTS扩展解空间,输出更优结果,并定义mini-Step以提高搜索细粒度。此外,该模型在翻译任务中表现出色,首次将Inference time scaling应用于机器翻译。

模型链接:

https://modelscope.cn/models/AIDC-AI/Marco-o1

示例代码:

import torch
from typing import List, Dict, Tuple
from modelscope import AutoModelForCausalLM, AutoTokenizer
def load_model_and_tokenizer(path):
    tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(path, trust_remote_code=True).to('cuda:0')
    model.eval()
    return tokenizer, model
def generate_response(model, tokenizer,
                      input_ids, attention_mask,
                      max_new_tokens=4096):
    generated_ids = input_ids
    with torch.inference_mode():
        for _ in range(max_new_tokens):
            outputs = model(input_ids=generated_ids, attention_mask=attention_mask)
            next_token_id = torch.argmax(outputs.logits[:, -1, :], dim=-1).unsqueeze(-1)
            generated_ids = torch.cat([generated_ids, next_token_id], dim=-1)
            attention_mask = torch.cat([attention_mask, torch.ones_like(next_token_id)], dim=-1)
            new_token = tokenizer.decode(next_token_id.squeeze(), skip_special_tokens=True)
            print(new_token, end='', flush=True)
            if next_token_id.item() == tokenizer.eos_token_id:
                break
                return tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], 
                                        skip_special_tokens=True)
def chat(model, tokenizer):
    history: List[Dict[str, str]] = []
    print("Enter 'q' to quit, 'c' to clear chat history.")
    while True:
        user_input = input("User: ").strip().lower()
        if user_input == 'q':
            print("Exiting chat.")
            break
            if user_input == 'c':
                print("Clearing chat history.")
                history.clear()
                continue
                if not user_input:
                    print("Input cannot be empty.")
                    continue
        history.append({"role": "user", "content": user_input})
        text = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=True)
        model_inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=4096).to('cuda:0')
        print('Assistant:', end=' ', flush=True)
        response = generate_response(model, tokenizer, model_inputs.input_ids, model_inputs.attention_mask)
        print()
        history.append({"role": "assistant", "content": response})
def main():
    path = "AIDC-AI/Marco-o1"
    tokenizer, model = load_model_and_tokenizer(path)
    print('Starting chat.')
    chat(model, tokenizer)
if __name__ == "__main__":
    main()

更多详情请看教程文章:

探索面向开放型问题的推理模型Marco-o1,阿里国际AI团队最新开源!

02.数据集推荐

DAVIS-Edit

DAVIS-Edit是一个专注于视频编辑和处理的数据集,可能包含用于训练和评估视频对象分割、跟踪和编辑算法的扩展或修改后的视频内容,旨在推动视觉AI技术在视频领域的应用和研究。

数据集链接:

https://modelscope.cn/datasets/AlonzoLeeeoooo/DAVIS-Edit

modjumlu

MMLU是一个全面的AI模型通用知识基准,覆盖从基础到高级专业领域的57个类别,通过将问题集合人工翻译成14种语言,包括对低资源语言的准确翻译,致力于提升AI模型的多语言处理能力,确保全球用户都能享受到准确、包容的AI技术服务。

数据集链接:

https://modelscope.cn/datasets/zhangx123/modjumlu

03.精选应用

超好用P图神器MagicQuill

MagicQuill是蚂蚁技术研究院开源的一个交互式的 AI 图像编辑工具,可以快速、简单的实现智能化、精细化的图像编辑。即便是 PS 小白,也能轻松上手。用画笔涂抹加一句提示词,瞬间完成复杂繁琐的图像编辑功能。

体验直达:

https://modelscope.cn/studios/ant-research/MagicQuill_demo

logo任意贴

In-Context LoRA + Image-to-Image + Inpainting,将你的logo应用到任何东西上。

体验直达:

https://www.modelscope.cn/studios/iic/logo-in-context

QwQ-32B-preview

QwQ-32B-Preview是由Qwen团队开发的实验性研究模型,旨在提升人工智能的推理能力。作为preview版本,它展示了有前途的分析能力,但也存在一些重要的局限性,比如代码切换和递归推理循环。在此demo中,仅支持单轮查询。

体验直达:

https://www.modelscope.cn/studios/Qwen/QwQ-32B-preview

Marco-o1

阿里国际AI团队最新开源的面向开放型问题的推理模型Marco-o1 演示demo。

体验直达:

https://www.modelscope.cn/studios/modelscope/Marco-o1

GLM-Edge系列demo

GLM-Edge系列是智谱AI开源的面向端侧真实落地使用的场景下的一次尝试,分别由大语言对话模型和多模态理解模型组成(GLM-Edge-1.5B-Chat,GLM-Edge-4B-Chat,GLM-Edge-V-2B,GLM-Edge-V-5B)。

体验直达:

GLM端侧1.5B对话大模型:

https://modelscope.cn/studios/ZhipuAI/GLM-Edge-1.5B-Chat-Demo

GLM端侧多模态大模型:

https://modelscope.cn/studios/ZhipuAI/GLM-Edge-V-5B-Demo

04.社区精选文章

相关文章
|
4天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
21天前
|
存储 人工智能 弹性计算
阿里云弹性计算_加速计算专场精华概览 | 2024云栖大会回顾
2024年9月19-21日,2024云栖大会在杭州云栖小镇举行,阿里云智能集团资深技术专家、异构计算产品技术负责人王超等多位产品、技术专家,共同带来了题为《AI Infra的前沿技术与应用实践》的专场session。本次专场重点介绍了阿里云AI Infra 产品架构与技术能力,及用户如何使用阿里云灵骏产品进行AI大模型开发、训练和应用。围绕当下大模型训练和推理的技术难点,专家们分享了如何在阿里云上实现稳定、高效、经济的大模型训练,并通过多个客户案例展示了云上大模型训练的显著优势。
|
25天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
16天前
|
并行计算 前端开发 物联网
全网首发!真·从0到1!万字长文带你入门Qwen2.5-Coder——介绍、体验、本地部署及简单微调
2024年11月12日,阿里云通义大模型团队正式开源通义千问代码模型全系列,包括6款Qwen2.5-Coder模型,每个规模包含Base和Instruct两个版本。其中32B尺寸的旗舰代码模型在多项基准评测中取得开源最佳成绩,成为全球最强开源代码模型,多项关键能力超越GPT-4o。Qwen2.5-Coder具备强大、多样和实用等优点,通过持续训练,结合源代码、文本代码混合数据及合成数据,显著提升了代码生成、推理和修复等核心任务的性能。此外,该模型还支持多种编程语言,并在人类偏好对齐方面表现出色。本文为周周的奇妙编程原创,阿里云社区首发,未经同意不得转载。
11585 12
|
10天前
|
人工智能 自然语言处理 前端开发
100个降噪蓝牙耳机免费领,用通义灵码从 0 开始打造一个完整APP
打开手机,录制下你完成的代码效果,发布到你的社交媒体,前 100 个@玺哥超Carry、@通义灵码的粉丝,可以免费获得一个降噪蓝牙耳机。
4073 14
|
16天前
|
人工智能 自然语言处理 前端开发
用通义灵码,从 0 开始打造一个完整APP,无需编程经验就可以完成
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。本教程完全免费,而且为大家准备了 100 个降噪蓝牙耳机,送给前 100 个完成的粉丝。获奖的方式非常简单,只要你跟着教程完成第一课的内容就能获得。
6819 10
|
28天前
|
缓存 监控 Linux
Python 实时获取Linux服务器信息
Python 实时获取Linux服务器信息
|
14天前
|
人工智能 自然语言处理 前端开发
什么?!通义千问也可以在线开发应用了?!
阿里巴巴推出的通义千问,是一个超大规模语言模型,旨在高效处理信息和生成创意内容。它不仅能在创意文案、办公助理、学习助手等领域提供丰富交互体验,还支持定制化解决方案。近日,通义千问推出代码模式,基于Qwen2.5-Coder模型,用户即使不懂编程也能用自然语言生成应用,如个人简历、2048小游戏等。该模式通过预置模板和灵活的自定义选项,极大简化了应用开发过程,助力用户快速实现创意。
|
3天前
|
机器学习/深度学习 人工智能 安全
通义千问开源的QwQ模型,一个会思考的AI,百炼邀您第一时间体验
Qwen团队推出新成员QwQ-32B-Preview,专注于增强AI推理能力。通过深入探索和试验,该模型在数学和编程领域展现了卓越的理解力,但仍在学习和完善中。目前,QwQ-32B-Preview已上线阿里云百炼平台,提供免费体验。
|
10天前
|
人工智能 C++ iOS开发
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
739 5