魔搭社区每周速递(12.01-12.07)

简介: 本周新增1338个模型,82个数据集,26个创新应用,8篇内容

image.png

🙋魔搭ModelScope本期社区进展:

📟1338个模型:HunyuanVideo、InternVL2.5系列、TeleChat2系列、AWPortraitCNfish-speech-1.5、Mistral-Nemo-Instruct-2407-FP等;

📁82个数据集:OpenO1-SFT、LLaVA-CoT-o1-Instruct、LLaVA-CoT-100k等;

🎨26个创新应用OminiControl、Hallo、HunyuanVideo等;

📄 8篇内容:

  • NexaAI, 一行命令运行魔搭社区模型,首次在设备上运行 Qwen2-Audio

  • 魔搭AIGC12月赛题公布&11月获奖作品出炉
  • 开发者福利,魔搭推出免费模型推理API,注册就送每日2000次调用!
  • 2024 “AI+硬件创新大赛”获奖名单出炉,浙大、上交与复旦联队等夺冠
  • 腾讯开源混元视频生成模型,这效果!太稳了吧!
  • 金融行业 · 大模型挑战赛 |用大模型理解金融市场
  • 智源研究院发布中文高质量数据集CCI3.0-HQ技术报告
  • 用 OpenVINO™ 部署 GLM-Edge 全家桶

01.精选模型

HunyuanVideo

HunyuanVideo是腾讯开源的一个具有超过130亿参数的先进开源视频生成模型,它通过集成数据管理、图像-视频联合训练和高效基础设施的综合框架,以及有效的模型架构和数据集扩展策略,实现了高视觉质量、运动多样性、文本-视频对齐和生成稳定性

模型链接:

https://modelscope.cn/models/AI-ModelScope/HunyuanVideo

代码示例:

详见 腾讯开源混元视频生成模型,这效果!太稳了吧!

InternVL2.5系列

InternVL 2.5是上海人工智能实验室开源的一个先进的多模态大型语言模型(MLLM)系列,基于InternVL 2.0的核心模型架构,在训练、测试策略以及数据质量方面作显著增强,通过对包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉锚定、多语言能力和纯语言处理等广泛基准的深入评估,是第一个在MMMU基准上超过70%的开源MLLM。

模型链接:

  • InternVL2_5-1B/summary:

https://www.modelscope.cn/models/OpenGVLab/InternVL2_5-1B/summary

  • InternVL2_5-2B:

https://www.modelscope.cn/models/OpenGVLab/InternVL2_5-2B

  • InternVL2_5-4B:

https://www.modelscope.cn/models/OpenGVLab/InternVL2_5-4B

  • InternVL2_5-8B:

https://www.modelscope.cn/models/OpenGVLab/InternVL2_5-8B

  • InternVL2_5-26B:

https://www.modelscope.cn/models/OpenGVLab/InternVL2_5-26B

  • InternVL2_5-38B:

https://www.modelscope.cn/models/OpenGVLab/InternVL2_5-38B

  • InternVL2_5-78B:

https://www.modelscope.cn/models/OpenGVLab/InternVL2_5-78B

代码示例:

transformers推理代码(以InternVL2_5-4B推理为例):

import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from modelscope import AutoModel, AutoTokenizer
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height
    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)
    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images
def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
path = 'OpenGVLab/InternVL2_5-4B'
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
# set the max number of tiles in `max_num`
pixel_values = load_image('./awesome.png', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)
# pure-text conversation (纯文本对话)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# single-image single-round conversation (单图单轮对话)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')
# single-image multi-round conversation (单图多轮对话)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
pixel_values1 = load_image('./awesome.png', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./noword.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
question = '<image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
pixel_values1 = load_image('./awesome.png', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./noword.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list,
                               history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list,
                               history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# batch inference, single image per sample (单图批处理)
pixel_values1 = load_image('./awesome.png', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./noword.jpg', max_num=12).to(torch.bfloat16).cuda()
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
responses = model.batch_chat(tokenizer, pixel_values,
                             num_patches_list=num_patches_list,
                             questions=questions,
                             generation_config=generation_config)
for question, response in zip(questions, responses):
    print(f'User: {question}\nAssistant: {response}')
# video multi-round conversation (视频多轮对话)
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
    if bound:
        start, end = bound[0], bound[1]
    else:
        start, end = -100000, 100000
    start_idx = max(first_idx, round(start * fps))
    end_idx = min(round(end * fps), max_frame)
    seg_size = float(end_idx - start_idx) / num_segments
    frame_indices = np.array([
        int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
        for idx in range(num_segments)
    ])
    return frame_indices
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    max_frame = len(vr) - 1
    fps = float(vr.get_avg_fps())
    pixel_values_list, num_patches_list = [], []
    transform = build_transform(input_size=input_size)
    frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
        img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(tile) for tile in img]
        pixel_values = torch.stack(pixel_values)
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values)
    pixel_values = torch.cat(pixel_values_list)
    return pixel_values, num_patches_list
video_path = './showcase.mp4'
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
question = video_prefix + 'What is the red panda doing?'
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Describe this video in detail. Don\'t repeat.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

TeleChat2

星辰语义大模型TeleChat2是由中国电信人工智能研究院研发训练的大语言模型。

TeleChat2系列模型包括TeleChat2-3B、TeleChat2-7B、TeleChat2-35B和TeleChat2-115B,具备显著的工具调用功能和优化的Function Call表现,相较同尺寸模型在多个榜单中表现优异。

该系列在训练数据和方法方面进行了全面改进,通用问答及逻辑推理等能力较前代提升超过29%。所有模型均在国产算力和深度学习框架上训练,保障了自主可控性。通过优化MP、PP、SP实现和长文训练技术,提升了模型性能和训练速度。

模型链接:

  • telechat2-3B

https://modelscope.cn/models/TeleAI/TeleChat2-3B

  • telechat2-7B

https://modelscope.cn/models/TeleAI/TeleChat2-7B

  • telechat2-35B

https://modelscope.cn/models/TeleAI/TeleChat2-35B-Nov

  • telechat2-115B

https://modelscope.cn/models/TeleAI/TeleChat2-115B

代码示例:

当前模型推理兼容了单卡和多卡推理,以及针对长文推理做了部分优化工作,模型推理方法示范:

import os
import torch
from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
tokenizer = AutoTokenizer.from_pretrained('TeleAI/TeleChat2-3B', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('TeleAI/TeleChat2-3B', trust_remote_code=True, device_map="auto",
                                                  torch_dtype=torch.float16)
prompt = "生抽与老抽的区别?"
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(messages,
  tokenize=False,
       add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

AWPortraitCN

AWPortraitCN 是基于FLUX.1-dev开发。它在训练时使用了更符合中国人外貌和审美特征的图像。它包含了多种类型的肖像,如室内和室外肖像、时尚和影棚照片。它具有很强的泛化能力。与原始版本相比,AWPortraitCN在皮肤质感上更加细腻真实。为了追求更真实的原始图像效果,它可以与AWPortraitSR工作流程一起使用。

模型链接:

https://modelscope.cn/models/LiblibAI/AWPortraitCN

效果展示:

image.png

02.数据集推荐

DAVIS-Edit

数据集专为通过SFT微调语言模型以激活思维链而设计,目的是提升模型在复杂推理任务上生成连贯、逻辑性强的推理序列的能力。

数据集链接:

https://modelscope.cn/datasets/AI-ModelScope/OpenO1-SFT

LLaVA-CoT-o1-Instruct

LLaVA-CoT-o1-Instruct是用于支持和提升语言模型在复杂任务中的逻辑推理和连贯性表现。

数据集链接:

https://modelscope.cn/datasets/AI-ModelScope/LLaVA-CoT-o1-Instruct

LLaVA-CoT-100k

LLaVA-CoT-100k是一个专注于复杂推理任务的数据集,包含100,000个样本。这个数据集被设计用来训练和测试语言模型,以提高它们在逻辑推理和问题解决方面的能力。

数据集链接:

https://modelscope.cn/datasets/AI-ModelScope/LLaVA-CoT-100k

03.精选应用

OminiControl

是一款内容生成工具,支持上传一张有主体的图片+一段文本关键词进行合成。具有广泛的应用前景。

体验直达:

https://modelscope.cn/studios/AI-ModelScope/OminiControl

Hallo

TTS x Hallo Talking Portrait Generator是一个集成多个开源项目的演示工具,允许用户生成会说话的肖像视频,但视频长度限制为4秒音频以内。

体验直达:

https://modelscope.cn/studios/AI-ModelScope/Hallo

HunyuanVideo

HunyuanVideo是一个创新的视频生成工具,它通过引入Transformer架构和Full Attention机制,实现了图像和视频的统一生成。该工具采用“Dual-stream to Single-stream”混合模型设计,首先独立处理视频和文本token,确保每个模态都能学习到适合自己的调制机制,然后在Single-stream阶段将视频和文本token融合,实现多模态信息的有效整合,捕捉视觉和语义信息之间的复杂交互,从而显著提升模型的整体性能。

体验直达:

https://modelscope.cn/studios/chuanSir/HunyuanVideo

04.社区精选文章


相关文章
|
4天前
|
数据采集 人工智能 自然语言处理
魔搭社区每周速递(1.5-1.18)
🙋魔搭ModelScope本期社区进展:新增3239个模型,711个数据集,192个创新应用, 16篇内容
|
1月前
|
人工智能 自然语言处理 小程序
魔搭社区每周速递(12.15-12.21)
🙋魔搭ModelScope本期社区进展:📟1914个模型,📁58个数据集,🎨78个创新应用,📄 8篇内容
魔搭社区每周速递(12.15-12.21)
|
1月前
|
人工智能 自然语言处理 安全
魔搭社区每周速递(12.08-12.14)
魔搭ModelScope本期社区进展:新增1599个模型,46个数据集,67个创新应用,8篇内容
魔搭社区每周速递(12.08-12.14)
|
5月前
|
人工智能 自然语言处理 文字识别
魔搭社区每周速递(8.18-8.24)
176个模型、35个数据集、85个创新应用、5篇应用文章
|
25天前
|
数据采集 存储 自然语言处理
魔搭社区每周速递(12.22-12.28)
魔搭ModelScope本期社区进展:1039个模型,128个数据集,63个创新应用,6篇内容。
|
1月前
|
人工智能 自然语言处理 算法
魔搭社区每周速递(11.24-11.30)
魔搭ModelScope本期社区进展:1361个模型,29个数据集,44个创新应用,5 篇内容
魔搭社区每周速递(11.24-11.30)
|
2月前
|
人工智能 自然语言处理 物联网
魔搭社区每周速递(11.17-11.23)
魔搭ModelScope本期社区进展:923个模型,85个数据集,35个创新应用,7 篇内容
魔搭社区每周速递(11.17-11.23)
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
魔搭社区每周速递(7.20-7.26)
174个模型、44个数据集、70个创新应用、5篇应用文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
魔搭社区每周速递(10.27-11.09)
4221个模型、112个数据集、95个创新应用、14篇应用文章
|
3月前
|
人工智能 自然语言处理 搜索推荐
魔搭社区每周速递(10.20-10.26)
4848个模型、45个数据集、46个创新应用、7篇应用文章