多模态大模型不够灵活,谷歌DeepMind创新架构Zipper:分开训练再压缩

简介: 【6月更文挑战第12天】谷歌DeepMind的Zipper架构解决了多模态大模型灵活性问题,通过分解为单模态模型并用“压缩”过程组合,实现多模态生成。该方法允许独立训练每个模态,提升灵活性和可扩展性,适用于数据有限或领域特定的模态。Zipper利用交叉注意力机制融合模态输出,适用于图像描述、语音识别等任务。尽管需要更多计算资源且性能受限于单模态模型质量,但已在ASR和TTS领域展现潜力。论文链接:https://arxiv.org/pdf/2405.18669

在多模态大模型领域,谷歌DeepMind最近提出了一种名为Zipper的创新架构,旨在解决当前多模态大模型灵活性不足的问题。Zipper的核心思想是将多模态大模型分解为多个单模态模型,然后通过一种名为“压缩”的过程将它们组合在一起,从而实现多模态生成能力。

Zipper的主要优势在于其灵活性和可扩展性。通过将多模态大模型分解为多个单模态模型,Zipper使得研究人员能够独立地训练和优化每个模态的模型,而无需担心其他模态的干扰。这对于那些数据量有限或者领域特定的模态来说尤为重要,因为它们可能无法从多模态训练中获得足够的关注。

此外,Zipper还通过“压缩”过程实现了多模态生成能力。具体来说,Zipper使用一种名为“交叉注意力”的机制,将多个单模态模型的输出进行融合,从而生成多模态的输出。这种机制使得Zipper能够灵活地组合不同的模态,从而实现各种多模态生成任务,如图像描述生成、语音识别等。

在实际应用中,Zipper已经在多个领域展示了其潜力。例如,在自动语音识别(ASR)领域,Zipper通过将文本和语音模型进行压缩,实现了出色的性能,甚至超过了一些基于词汇扩展的方法。在文本到语音生成(TTS)领域,Zipper通过使用一个预训练的语音模型作为基础,实现了更好的性能。

然而,Zipper也存在一些挑战和局限性。首先,Zipper的灵活性和可扩展性也意味着它需要更多的计算资源和数据来训练和优化。其次,Zipper的性能可能受到单模态模型的质量和多样性的限制,如果某些模态的模型质量较差,可能会影响整个系统的生成效果。

此外,Zipper的“压缩”过程也需要仔细设计和优化。例如,交叉注意力机制的参数设置、单模态模型的输出表示等都需要仔细调整,以确保最佳的生成效果。

论文链接:https://arxiv.org/pdf/2405.18669

目录
相关文章
|
24天前
|
存储 边缘计算 Cloud Native
“论模型驱动架构设计方法及其应用”写作框架,软考高级,系统架构设计师
模型驱动架构设计是一种用于应用系统开发的软件设计方法,以模型构造、模型转换和精化为核心,提供了一套软件设计的指导规范。在模型驱动架构环境下,通过创建出机器可读和高度抽象的模型实现对不同问题域的描述,这些模型独立于实现技术,以标准化的方式储存,利用模型转换策略来驱动包括分析、设计和实现等在内的整个软件开发过程。
|
14天前
|
Kubernetes Cloud Native 微服务
企业级容器部署实战:基于ACK与ALB灵活构建云原生应用架构
这篇内容概述了云原生架构的优势,特别是通过阿里云容器服务Kubernetes版(ACK)和应用负载均衡器(ALB)实现的解决方案。它强调了ACK相对于自建Kubernetes的便利性,包括优化的云服务集成、自动化管理和更强的生态系统支持。文章提供了部署云原生应用的步骤,包括一键部署和手动部署的流程,并指出手动部署更适合有技术背景的用户。作者建议在预算允许的情况下使用ACK,因为它能提供高效、便捷的管理体验。同时,文章也提出了对文档改进的建议,如添加更多技术细节和解释,以帮助用户更好地理解和实施解决方案。最后,展望了ACK未来在智能化、安全性与边缘计算等方面的潜在发展。水文一篇,太忙了,见谅!
|
13天前
|
敏捷开发 Java 测试技术
「架构」模型驱动架构设计方法及其运用
本文探讨了MDA在软件开发中的应用,从需求分析到测试,使用UML建模功能需求,通过PIM设计架构,自动生成代码以减少错误。MDA提升了可维护性、可扩展性和可移植性,通过工具如Enterprise Architect和Eclipse MDT支持自动化转换。虽然有挑战,如模型创建和平台转换,但结合敏捷方法和适当工具能有效解决,从而提高开发效率和软件质量。
14 0
「架构」模型驱动架构设计方法及其运用
|
17天前
|
机器学习/深度学习 算法 文件存储
使用Python实现深度学习模型:神经架构搜索与自动机器学习
【7月更文挑战第5天】 使用Python实现深度学习模型:神经架构搜索与自动机器学习
30 2
|
18天前
|
机器学习/深度学习 自然语言处理 计算机视觉
Transformer深度学习架构与GPT自然语言处理模型
Transformer和GPT(Generative Pre-trained Transformer)是深度学习和自然语言处理(NLP)领域的两个重要概念,它们之间存在密切的关系但也有明显的不同。
28 2
|
1月前
|
机器学习/深度学习 自然语言处理 算法
用神经架构搜索给LLM瘦身,模型变小,准确度有时反而更高
【6月更文挑战第20天】研究人员运用神经架构搜索(NAS)压缩LLM,如LLaMA2-7B,找到小而精准的子网,降低内存与计算成本,保持甚至提升性能。实验显示在多个任务上,模型大小减半,速度加快,精度不变或提升。NAS虽需大量计算资源,但结合量化技术,能有效优化大型语言模型。[论文链接](https://arxiv.org/pdf/2405.18377)**
28 2
|
1月前
|
机器学习/深度学习 算法框架/工具 计算机视觉
ViT模型的出现标志着Transformer架构在计算机视觉中的成功应用
ViT模型的出现标志着Transformer架构在计算机视觉中的成功应用
37 2
|
1月前
|
机器学习/深度学习 人工智能 算法
【人工智能】第二部分:ChatGPT的架构设计和训练过程
【人工智能】第二部分:ChatGPT的架构设计和训练过程
78 4
|
1月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习】CLIP模型在有限计算资源下的性能探究:从数据、架构到训练策略
【机器学习】CLIP模型在有限计算资源下的性能探究:从数据、架构到训练策略
179 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习的未来:从模型架构到应用场景
在信息技术飞速发展的时代,深度学习作为人工智能的核心领域正不断推动科技前沿。本文将探讨深度学习的最新发展趋势,包括模型架构的创新和实际应用场景的拓展。同时,我们将分析当前面临的挑战以及未来可能的发展方向,旨在为读者提供一个全面的视角,了解这一充满潜力的技术领域。
29 0