多模态大模型不够灵活,谷歌DeepMind创新架构Zipper:分开训练再压缩

简介: 【6月更文挑战第12天】谷歌DeepMind的Zipper架构解决了多模态大模型灵活性问题,通过分解为单模态模型并用“压缩”过程组合,实现多模态生成。该方法允许独立训练每个模态,提升灵活性和可扩展性,适用于数据有限或领域特定的模态。Zipper利用交叉注意力机制融合模态输出,适用于图像描述、语音识别等任务。尽管需要更多计算资源且性能受限于单模态模型质量,但已在ASR和TTS领域展现潜力。论文链接:https://arxiv.org/pdf/2405.18669

在多模态大模型领域,谷歌DeepMind最近提出了一种名为Zipper的创新架构,旨在解决当前多模态大模型灵活性不足的问题。Zipper的核心思想是将多模态大模型分解为多个单模态模型,然后通过一种名为“压缩”的过程将它们组合在一起,从而实现多模态生成能力。

Zipper的主要优势在于其灵活性和可扩展性。通过将多模态大模型分解为多个单模态模型,Zipper使得研究人员能够独立地训练和优化每个模态的模型,而无需担心其他模态的干扰。这对于那些数据量有限或者领域特定的模态来说尤为重要,因为它们可能无法从多模态训练中获得足够的关注。

此外,Zipper还通过“压缩”过程实现了多模态生成能力。具体来说,Zipper使用一种名为“交叉注意力”的机制,将多个单模态模型的输出进行融合,从而生成多模态的输出。这种机制使得Zipper能够灵活地组合不同的模态,从而实现各种多模态生成任务,如图像描述生成、语音识别等。

在实际应用中,Zipper已经在多个领域展示了其潜力。例如,在自动语音识别(ASR)领域,Zipper通过将文本和语音模型进行压缩,实现了出色的性能,甚至超过了一些基于词汇扩展的方法。在文本到语音生成(TTS)领域,Zipper通过使用一个预训练的语音模型作为基础,实现了更好的性能。

然而,Zipper也存在一些挑战和局限性。首先,Zipper的灵活性和可扩展性也意味着它需要更多的计算资源和数据来训练和优化。其次,Zipper的性能可能受到单模态模型的质量和多样性的限制,如果某些模态的模型质量较差,可能会影响整个系统的生成效果。

此外,Zipper的“压缩”过程也需要仔细设计和优化。例如,交叉注意力机制的参数设置、单模态模型的输出表示等都需要仔细调整,以确保最佳的生成效果。

论文链接:https://arxiv.org/pdf/2405.18669

目录
相关文章
|
2月前
|
数据采集 机器学习/深度学习 大数据
行为检测代码(一):超详细介绍C3D架构训练+测试步骤
这篇文章详细介绍了C3D架构在行为检测领域的应用,包括训练和测试步骤,使用UCF101数据集进行演示。
72 1
行为检测代码(一):超详细介绍C3D架构训练+测试步骤
|
2月前
|
人工智能 测试技术 数据处理
首个Mamba+Transformer混合架构多模态大模型来了,实现单卡千图推理
【10月更文挑战第18天】《LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture》提出了一种新型多模态大模型LongLLaVA,结合了Mamba和Transformer架构,通过系统优化实现在单张A100 80GB GPU上处理近千张图像的突破。该模型在视频理解、高分辨率图像分析和多模态智能体任务中表现出色,显著提升了计算效率。
163 64
|
27天前
|
机器学习/深度学习 自然语言处理 分布式计算
大规模语言模型与生成模型:技术原理、架构与应用
本文深入探讨了大规模语言模型(LLMs)和生成模型的技术原理、经典架构及应用。介绍了LLMs的关键特点,如海量数据训练、深层架构和自监督学习,以及常见模型如GPT、BERT和T5。同时,文章详细解析了生成模型的工作原理,包括自回归模型、自编码器和GANs,并讨论了这些模型在自然语言生成、机器翻译、对话系统和数据增强等领域的应用。最后,文章展望了未来的发展趋势,如模型压缩、跨模态生成和多语言多任务学习。
106 3
|
9天前
|
监控 安全 API
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
本文详细介绍了PaliGemma2模型的微调流程及其在目标检测任务中的应用。PaliGemma2通过整合SigLIP-So400m视觉编码器与Gemma 2系列语言模型,实现了多模态数据的高效处理。文章涵盖了开发环境构建、数据集预处理、模型初始化与配置、数据加载系统实现、模型微调、推理与评估系统以及性能分析与优化策略等内容。特别强调了计算资源优化、训练过程监控和自动化优化流程的重要性,为机器学习工程师和研究人员提供了系统化的技术方案。
130 77
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
|
2月前
|
人工智能 前端开发 JavaScript
前端架构思考 :专注于多框架的并存可能并不是唯一的方向 — 探讨大模型时代前端的分层式微前端架构
随着前端技术的发展,微前端架构成为应对复杂大型应用的流行方案,允许多个团队使用不同技术栈并将其模块化集成。然而,这种设计在高交互性需求的应用中存在局限,如音视频处理、AI集成等。本文探讨了传统微前端架构的不足,并提出了一种新的分层式微前端架构,通过展示层与业务层的分离及基于功能的横向拆分,以更好地适应现代前端需求。
|
21天前
|
存储 人工智能 缓存
Mooncake:月之暗面Kimi联合清华等机构推出的大模型推理架构
Mooncake是由月之暗面Kimi联合清华大学等机构共同开源的大模型推理架构。该架构以KVCache为中心,通过分布式设计和资源优化,显著提升了大模型推理的吞吐量和效率,同时降低了算力开销。Mooncake在长上下文场景中表现出色,支持多种应用场景,如自然语言处理、内容推荐系统和搜索引擎等。
89 6
Mooncake:月之暗面Kimi联合清华等机构推出的大模型推理架构
|
10天前
|
机器学习/深度学习 测试技术 定位技术
新扩散模型OmniGen一统图像生成,架构还高度简化、易用
近期,一篇题为“OmniGen: Unified Image Generation”的论文介绍了一种新型扩散模型OmniGen,旨在统一图像生成任务。OmniGen架构简洁,无需额外模块即可处理多种任务,如文本到图像生成、图像编辑等。该模型通过修正流优化,展现出与现有模型相当或更优的性能,尤其在图像编辑和视觉条件生成方面表现突出。OmniGen仅含3.8亿参数,却能有效处理复杂任务,简化工作流程。尽管如此,OmniGen仍存在对文本提示敏感、文本渲染能力有限等问题,未来研究将继续优化其架构与功能。
39 16
|
23天前
|
人工智能 测试技术 计算机视觉
LongLLaVA:香港中文大学推出的多模态上下文混合架构大语言模型
LongLLaVA是由香港中文大学推出的多模态大型语言模型,采用混合架构,结合Mamba和Transformer模块,旨在高效处理大量图像数据。该模型能够在单个A100 80GB GPU上处理多达1000张图像,通过2D池化技术压缩图像token,显著降低计算成本,同时保留关键的空间关系信息。LongLLaVA在视频理解、高分辨率图像分析和多模态代理等应用场景中展现出卓越的性能。
44 5
LongLLaVA:香港中文大学推出的多模态上下文混合架构大语言模型
|
1月前
|
机器学习/深度学习 自然语言处理 C++
TSMamba:基于Mamba架构的高效时间序列预测基础模型
TSMamba通过其创新的架构设计和训练策略,成功解决了传统时间序列预测模型面临的多个关键问题。
123 4
TSMamba:基于Mamba架构的高效时间序列预测基础模型
|
24天前
|
网络协议 网络架构
TCP/IP协议架构:四层模型详解
在网络通信的世界里,TCP/IP协议栈是构建现代互联网的基础。本文将深入探讨TCP/IP协议涉及的四层架构,以及每一层的关键功能和作用。
111 5
下一篇
DataWorks