Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary

简介: Learning to Compare Image Patches via Convolutional Neural Networks ---  Reading Summary 2017.03.08  Target: this paper attempt to learn a geneal...

 

Learning to Compare Image Patches via Convolutional Neural Networks ---  Reading Summary 

2017.03.08 

 

Target: this paper attempt to learn a geneal similarity function for comparing image patches from image data directly. 

 

There are several ways in which patch pairs can be processed by the network and how the information sharing can take place in this case. This paper studied 3 types about the comparion network:

  1. 2-channel    2. Siamese   3. Pseu-siamese Network 

 


1. Siamese Network : 

  This is a chassical network which first proposed by Lecun. This network has two networks which denote two inputs (the compared image pairs). Each network has its own convolution layer, ReLU and max-pooling layer. It is also worthy to notice that: the two networks are share same weights. 

 

2. Pseudo-siamese Network :

  the same definition as siamese network, but the two branches do not share weights. This is the most difference between siamese and pseudo-siamese network. 

 

3. 2-channel network : 

  Just combine two input patches 1 and 2 together, and input it into normal convolutional network. The output of the network is 1 value. This kind of network has greater flexibnility and fast to train. But, it is expensive when testing, because it need all combinations of patches. 

 

 


 

 


  

 

 

  

 

 

 

相关文章
|
5月前
|
机器学习/深度学习 人工智能 算法
【博士每天一篇论文-算法】Collective Behavior of a Small-World Recurrent Neural System With Scale-Free Distrib
本文介绍了一种新型的尺度无标度高聚类回声状态网络(SHESN)模型,该模型通过模拟生物神经系统的特性,如小世界现象和无标度分布,显著提高了逼近复杂非线性动力学系统的能力,并在Mackey-Glass动态系统和激光时间序列预测等问题上展示了其优越的性能。
43 1
【博士每天一篇论文-算法】Collective Behavior of a Small-World Recurrent Neural System With Scale-Free Distrib
|
8月前
|
算法 BI 计算机视觉
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
74 1
|
算法 PyTorch 算法框架/工具
论文解读:LaMa:Resolution-robust Large Mask Inpainting with Fourier Convolutions
论文解读:LaMa:Resolution-robust Large Mask Inpainting with Fourier Convolutions
764 0
|
机器学习/深度学习 存储 自然语言处理
PESE Event Structure Extraction using Pointer Network based Encoder-Decoder Architecture论文解读
事件抽取(EE)的任务旨在从文本中找到事件和事件相关的论元信息,并以结构化格式表示它们。大多数以前的工作都试图通过分别识别多个子结构并将它们聚合以获得完整的事件结构来解决这个问题。
87 0
PointNet++:Deep Hierarchical Feature Learning on Points Sets in a Metrci Space 学习笔记
PointNet++:Deep Hierarchical Feature Learning on Points Sets in a Metrci Space 学习笔记
92 0
|
机器学习/深度学习 算法 数据挖掘
A Generative Adversarial Network-based Deep Learning Method for Low-quality Defect ImageReconstructi
本文提出了一种基于生成对抗网络 (GAN) 的 DL 方法,用于低质量缺陷图像识别。 GAN用于重建低质量缺陷图像,并建立VGG16网络识别重建图像。
161 0
|
机器学习/深度学习 算法 图形学
Deep learning based multi-scale channel compression feature surface defect detection system
简述:首先应用背景分割和模板匹配技术来定义覆盖目标工件的ROI区域。提取的感兴趣区域被均匀地裁剪成若干个图像块,每个块被送到基于CNN的模型,以分类杂乱背景中不同大小的表面缺陷。最后,对空间上相邻且具有相同类别标签的图像块进行合并,以生成各种表面缺陷的识别图。
154 0
|
机器学习/深度学习 异构计算 索引
PyG学习笔记2-CREATING MESSAGE PASSING NETWORKS
PyG学习笔记2-CREATING MESSAGE PASSING NETWORKS
384 0
PyG学习笔记2-CREATING MESSAGE PASSING NETWORKS
|
机器学习/深度学习 算法 数据挖掘
【多标签文本分类】Improved Neural Network-based Multi-label Classification with Better Initialization ……
【多标签文本分类】Improved Neural Network-based Multi-label Classification with Better Initialization ……
142 0
【多标签文本分类】Improved Neural Network-based Multi-label Classification with Better Initialization ……
|
机器学习/深度学习 边缘计算 人工智能
Re0:读论文 PPNP/APPNP Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Re0:读论文 PPNP/APPNP Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Re0:读论文 PPNP/APPNP Predict then Propagate: Graph Neural Networks meet Personalized PageRank