阿里云引领智算集群网络架构的新一轮变革

简介: 11月8日~10日在江苏张家港召开的CCF ChinaNet(即中国网络大会)上,众多院士、教授和业界技术领袖齐聚一堂,畅谈网络未来的发展方向,聚焦智算集群网络的创新变革。

【阅读原文】戳:阿里云引领智算集群网络架构的新一轮变革


11月8日~10日在江苏张家港召开的CCF ChinaNet(即中国网络大会)上,众多院士、教授和业界技术领袖齐聚一堂,畅谈网络未来的发展方向,聚焦智算集群网络的创新变革。其中,阿里云研发副总裁,基础设施网络负责人蔡德忠生发表题为《规模x10驱动AI智算集群网络架构新一轮变革》的主题演讲,展望智算技术发展趋势,尤其是Scale up网络的发展方向,提出智算网络未来的技术架构变革的新思路,发布了高通量以太网协议和智算超节点系统ENode+的路标规划,引起广泛关注。

 

 

 

 

过去一年,阿里云HPN7.0引领智算以太网生态蓬勃发展

 

 

 

模型的持续scaling,以及数据集的扩充,对于模型训练的总计算量要求一直在增长,业界总结发现,算力需求量每年增长4-6倍,而单颗芯片的算力增长、显存增长、网络带宽增长仍然遵循摩尔定律,每2年才一倍,无法满足算力增长的需求,所以算力来自于将更多的GPU进行集群化互联,网络在算力scaling中扮演关键的角色。

 

在2023年初的时候,智算集群的网络方案选择还是百花齐放的状态,Google有基于私有协议的TPU集群,微软使用了NV提供的一整套IB方案,而阿里云、AWS等公司坚持使用开放的以太网来构建集群。一时间,以太网还是IB,成为智算集群架构选择的关键话题。阿里云坚定以太网的路线,并且针对智算集群的特点创新设计了HPN7.0架构,采用业界首发的全自研51.2T交换机,利用多轨、双上联、双平面,结合自研通信库、协议、流控组成高性能系统。阿里云在大规模部署HPN7.0智算集群的同时,其论文被顶会SIGCOMM录取,成为网络顶会历史上首篇AI智算网络架构论文。

 

一年多时间过去了,阿里云HPN7.0已经成为业界标杆,引领了以太网智算集群的技术方向,目前国内外各大公司都在朝着这个方向演进,北美几大公司都已经或者即将基于以太网来部署十万卡级别的算力集群,关于智算集群以太网和IB的争议已经落幕,以太网正在成为超大规模智算集群的行业主流

 

 

 

 

未来几年,X10规模将给网络带来新的重要问题

 

 

 

虽然以太网和IB的选择已经画上句号,但是新的挑战还在继续。在智算集群的规模化方向上,各大公司你追我赶,国内公司的智算集群也将很快向X10规模迈进,尤其是在算力受到限制的情况下,通过网络互联扩展规模更有必要。GPU规模的扩展并不是想象中这么简单:不可避免的硬件故障将导致任务中断会更加频繁;受限于电力、空间,GPU资源可能会分布在不同园区,距离带来的时延和带宽限制会对整个训练集群的性能产生影响;尤其是GPU Scale up范围也将更大,智算集群的网络架构也会因此产生深远的变革。

 

通过更大带宽的网络互联是算力扩展的必经之路,这是从整体系统架构层面突破摩尔定律限制的主要路径。在这个方向上,无论Scale up、Scale out都需要更加激进的规划。

 

 

 

 

GPU Scale up协议路线之争,Ethernet优势明显

 

 

 

到底什么是Scale up?简单来讲,Scale up就是在一定范围内、在成本和互联技术约束下实现的超高带宽互联。这个超高带宽互联的范围固定并且带宽是Scale out的数倍以上,可以在协议层面优化来支持内存语义。

 

不少人以为Scale up是机内互联,这是一种误解。在8卡系统的时代,因为8卡在一个OS内部所以确实是机内互联,然而,当NVL36、72这种AI rack的形态出现后,GPU Scale up就不是“机内互联”,而是一种新型的节点间网络互联。以NVL72为例,实际上是18台服务器通过9台Scale up交换机连在一起的网络域,只不过是在这个域内的带宽10倍于Scale out的大的带宽(7.2Tbps vs 800Gbps),此外还支持了内存操作语义,为了区分,我们继续称其为GPU Scale up。

 

 

GPU Scale up是AI系统发展的一个热门话题,备受关注。Scale up网络大体上可以分成2个技术方向。

 

1.以NV、Google为代表的私有协议、封闭系统方案(NVLink和TPU互联)。

 

2.以各大互联网和云计算公司自研GPU(微软、Meta、Tesla等),以及AMD、Intel为代表的基于Ethernet的网络传输方案。

 

Ethernet有超大带宽技术和强大的生态支撑,尤其是UEC、高通量以太网等开放组织针对Scale up进行协议的升级后,Ethernet支持超大带宽的同时实现了超低时延、在网计算等核心功能,所以我们可以看到新晋Scale up系统都选择了Ethernet,可以说Ethernet这些特质已经成为GPU Scale up网络快速落地的首选技术方案

 

 

 

 

计算和网络的新变革,Scale up融合架构优势明显

 

 

 

Scale up与Scale out如何协同工作是决定集群网络性能的关键。在今天的单机8卡系统中,通过多轨互联、并行排布、通信库协同,阿里云的HPN7.0架构已经将万卡级别的通信性能发挥到极致。那将来Scale up扩展到多机系统,尤其是成百上千卡之后,Scale up与Scale out应该如何协同做到全局效率最高呢?机尾backend会继续沿着Scale up+Scale out两张网络各自发展,还是会融合兼顾?

 

当Ethernet成为Scale up的主流方案之后,这个选择方向呼之欲出,融合架构将是效率更高、成本更低的架构。融合架构将使带宽得到充分共享,Scale up范围内进行大带宽的TP、EP、CP等通信,多个Scale up域通过Scale out互联,进行DP、PP等通信,跨Scale up实现合理的带宽收敛即可。同时,独立Scale out网卡+网络的成本也不容小觑,如果将 Scale up和Scale out的以太网融合为一张网,通过将不同的Scale up域进行Scale out互联组网,不但少了一张网络和网卡的投入,在运维、扩展上也将更加统一高效。

 

11.12-02-修改.png

 

 

 

 

未来可期,高通量以太网发布关键路标和超节点ENode+计划

 

 

 

在大会上,阿里云代表联盟发布了高通量以太网的协议路线图,规划了年度大版本,半年小版本的演进方式,为国内智算生态的快速发展迭代打好网络基础。同时发布了基于高通量以太网的ENode+超节点路线,为高通量以太网的系统化落地构筑蓝图


 





我们是阿里巴巴云计算和大数据技术幕后的核心技术输出者。

欢迎关注 “阿里云基础设施”同名微信微博知乎

获取关于我们的更多信息~

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
3天前
|
云安全 人工智能 安全
阿里云稳居公共云网络安全即服务市占率第一
日前,全球领先的IT市场研究和咨询公司IDC发布了《中国公有云网络安全即服务市场份额,2023:规模稳步增长,技术创新引领市场格局》报告。报告显示,阿里云以27.0%的市场份额蝉联榜首。
|
9天前
|
人工智能 运维 网络架构
阿里云引领智算集群网络架构的新一轮变革
11月8日至10日,CCF ChinaNet(中国网络大会)在江苏张家港召开,众多院士、教授和技术领袖共聚一堂,探讨网络未来发展方向。阿里云研发副总裁蔡德忠发表主题演讲,展望智算技术发展趋势,提出智算网络架构变革的新思路,发布高通量以太网协议和ENode+超节点系统规划,引起广泛关注。阿里云HPN7.0引领智算以太网生态蓬勃发展,成为业界标杆。未来,X10规模的智算集群将面临新的挑战,Ethernet将成为主流方案,推动Scale up与Scale out的融合架构,提升整体系统性能。
|
7天前
|
存储 缓存 NoSQL
【赵渝强老师】Memcached集群的架构
Memcached 是一个高性能的分布式内存对象缓存系统,通过在内存中维护一个巨大的 Hash 表来存储各种格式的数据,如图像、视频、文件及数据库检索结果等。它主要用于减轻数据库压力,提高网站系统的性能。Memcached 不支持数据持久化,因此仅作为缓存技术使用。其数据分布式存储由客户端应用程序实现,而非服务端。
【赵渝强老师】Memcached集群的架构
|
7天前
|
调度 Docker 容器
【赵渝强老师】Docker Swarm集群的体系架构
Docker Swarm自1.12.0版本起集成至Docker引擎,无需单独安装。它内置服务发现功能,支持跨多服务器或宿主机创建容器,形成集群提供服务。相比之下,Docker Compose仅限于单个宿主机。Docker Swarm采用主从架构,Swarm Manager负责管理和调度集群中的容器资源,用户通过其接口发送指令,Swarm Node根据指令创建容器运行应用。
|
5天前
|
缓存 负载均衡 JavaScript
探索微服务架构下的API网关模式
【10月更文挑战第37天】在微服务架构的海洋中,API网关犹如一座灯塔,指引着服务的航向。它不仅是客户端请求的集散地,更是后端微服务的守门人。本文将深入探讨API网关的设计哲学、核心功能以及它在微服务生态中扮演的角色,同时通过实际代码示例,揭示如何实现一个高效、可靠的API网关。
|
3天前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
4天前
|
Dubbo Java 应用服务中间件
服务架构的演进:从单体到微服务的探索之旅
随着企业业务的不断拓展和复杂度的提升,对软件系统架构的要求也日益严苛。传统的架构模式在应对现代业务场景时逐渐暴露出诸多局限性,于是服务架构开启了持续演变之路。从单体架构的简易便捷,到分布式架构的模块化解耦,再到微服务架构的精细化管理,企业对技术的选择变得至关重要,尤其是 Spring Cloud 和 Dubbo 等微服务技术的对比和应用,直接影响着项目的成败。 本篇文章会从服务架构的演进开始分析,探索从单体项目到微服务项目的演变过程。然后也会对目前常见的微服务技术进行对比,找到目前市面上所常用的技术给大家进行讲解。
14 1
服务架构的演进:从单体到微服务的探索之旅
|
3天前
|
Cloud Native 安全 API
云原生架构下的微服务治理策略与实践####
—透过云原生的棱镜,探索微服务架构下的挑战与应对之道 本文旨在探讨云原生环境下,微服务架构所面临的关键挑战及有效的治理策略。随着云计算技术的深入发展,越来越多的企业选择采用云原生架构来构建和部署其应用程序,以期获得更高的灵活性、可扩展性和效率。然而,微服务架构的复杂性也带来了服务发现、负载均衡、故障恢复等一系列治理难题。本文将深入分析这些问题,并提出一套基于云原生技术栈的微服务治理框架,包括服务网格的应用、API网关的集成、以及动态配置管理等关键方面,旨在为企业实现高效、稳定的微服务架构提供参考路径。 ####
20 5
|
5天前
|
监控 API 微服务
后端技术演进:从单体架构到微服务的转变
随着互联网应用的快速增长和用户需求的不断演化,传统单体架构已难以满足现代软件开发的需求。本文深入探讨了后端技术在面对复杂系统挑战时的演进路径,重点分析了从单体架构向微服务架构转变的过程、原因及优势。通过对比分析,揭示了微服务架构如何提高系统的可扩展性、灵活性和维护效率,同时指出了实施微服务时面临的挑战和最佳实践。
22 7