CoT神话破灭,并非LLM标配!三大学府机构联手证实,CoT仅在数学符号推理有用

简介: 【10月更文挑战第17天】链式思维(CoT)曾被认为是大型语言模型(LLM)激发推理能力的关键方法,但最新研究显示,CoT仅在数学和符号推理任务中有效,其他任务中效果不明显。加州大学伯克利分校、斯坦福大学和卡内基梅隆大学的联合研究打破了CoT作为LLM标配的神话,为重新评估LLM的推理能力提供了新视角。

在大型语言模型(LLM)领域,链式思维(Chain of Thought,CoT)提示方法一度被视为激发模型推理能力的关键手段。然而,近期一项由三所知名学府机构联合开展的研究,对这一观点提出了挑战。该研究通过定量元分析和大量实验评估,得出结论:CoT方法在数学和符号推理任务中表现优异,但在其他类型任务中的效果却并不明显。这一发现不仅打破了CoT作为LLM标配的神话,也为我们重新审视LLM的推理能力提供了新的视角。

CoT方法最早由谷歌大脑团队在2020年提出,其核心思想是通过向模型提供逐步推理的过程,帮助模型生成可解释的决策路径。这种方法在数学问题求解、逻辑推理等任务中取得了显著效果,并迅速成为LLM领域的研究热点。然而,随着研究的深入,一些学者开始质疑CoT方法的普适性。他们认为,CoT方法可能只适用于特定类型的任务,而在其他任务中可能并不必要甚至可能产生负面影响。

为了验证这一观点,来自加州大学伯克利分校、斯坦福大学和卡内基梅隆大学的研究人员联合开展了一项大规模研究。他们首先对100多篇使用CoT方法的论文进行了定量元分析,以了解CoT方法在不同任务中的表现。然后,他们又在20个数据集上对14个模型进行了实验评估,以进一步验证CoT方法的效果。

研究结果显示,CoT方法在数学和符号推理任务中确实表现出色。例如,在MMLU(大规模多任务语言理解)基准测试中,使用CoT方法的模型在包含等号(表示符号操作和推理)的问题上的准确率明显高于直接生成答案的模型。然而,在其他类型的任务中,CoT方法的效果却并不明显。例如,在自然语言理解、文本生成等任务中,使用CoT方法的模型与直接生成答案的模型之间的准确率差异非常小。

这一研究结果揭示了CoT方法的局限性。首先,CoT方法主要适用于需要逐步推理和符号操作的任务,而在其他任务中可能并不必要。其次,CoT方法在提高模型可解释性的同时,也可能增加模型的复杂性和计算成本。因此,在实际应用中,我们需要根据任务的特点和需求来决定是否使用CoT方法。

此外,这一研究还为我们指明了未来研究的方向。首先,我们需要探索新的模型架构和训练方法,以更好地利用LLM的推理能力。其次,我们需要研究如何将CoT方法与其他技术(如强化学习、监督学习等)相结合,以进一步提高模型的性能和可解释性。最后,我们还需要探索如何将LLM应用于更广泛的领域和任务,以充分发挥其潜力。

从正面来看,这项研究为我们提供了关于CoT方法的全面评估,有助于我们更好地理解LLM的推理能力。它提醒我们不要盲目追求CoT方法,而是要根据任务的特点和需求来选择合适的方法。同时,它也为我们指明了未来研究的方向,有助于推动LLM领域的发展。

然而,从反面来看,这项研究也存在一些局限性。首先,它只评估了CoT方法在特定任务和模型上的表现,可能无法完全代表CoT方法的普适性。其次,它没有深入研究CoT方法的内部机制和影响因素,可能无法提供关于CoT方法的全面理解。因此,在未来的研究中,我们需要进一步探索CoT方法的适用范围和影响因素,以提供更全面、更深入的理解。

论文地址:https://arxiv.org/abs/2409.12183

目录
相关文章
|
18天前
|
机器学习/深度学习 存储 缓存
ORCA:基于持续批处理的LLM推理性能优化技术详解
大语言模型(LLMs)的批处理优化面临诸多挑战,尤其是由于推理过程的迭代性导致的资源利用不均问题。ORCA系统通过引入迭代级调度和选择性批处理技术,有效解决了这些问题,大幅提高了GPU资源利用率和系统吞吐量,相比FasterTransformer实现了最高37倍的性能提升。
86 26
|
14天前
|
人工智能 数据挖掘
AI长脑子了?LLM惊现人类脑叶结构并有数学代码分区,MIT大牛新作震惊学界!
麻省理工学院的一项新研究揭示了大型语言模型(LLM)内部概念空间的几何结构,与人脑类似。研究通过分析稀疏自编码器生成的高维向量,发现了概念空间在原子、大脑和星系三个层次上的独特结构,为理解LLM的内部机制提供了新视角。论文地址:https://arxiv.org/abs/2410.19750
57 12
|
22天前
|
缓存 算法 关系型数据库
MIT韩松团队长上下文LLM推理高效框架DuoAttention:单GPU实现330万Token上下文推理
麻省理工学院韩松团队提出DuoAttention框架,旨在提高大型语言模型(LLM)处理长上下文的效率。该框架通过区分检索头和流式头,仅对检索头应用全键值缓存,减少内存消耗和计算时间,同时保持模型长上下文处理能力。实验结果显示,DuoAttention在多种模型架构上显著提升了推理效率,为LLM的实际应用提供了新可能。
50 14
|
26天前
|
自然语言处理 算法
RAG真能提升LLM推理能力?人大最新研究:数据有噪声,RAG性能不升反降
随着大型语言模型(LLM)在自然语言处理领域的广泛应用,检索增强生成(RAG)技术因能引入新知识和减少幻觉而受到关注。然而,RAG对LLM推理能力的实际提升效果仍存争议。中国人民大学的一项研究表明,RAG虽能辅助LLM推理,但在处理含噪信息和深度推理时面临挑战。为此,研究团队提出了DPrompt tuning方法,旨在解决噪声问题并提升RAG性能。
48 12
|
20天前
|
缓存 自然语言处理 API
Ascend推理组件MindIE LLM
MindIE LLM是基于昇腾硬件的大语言模型推理组件,提供高性能的多并发请求调度与优化技术,如Continuous Batching、PageAttention等,支持Python和C++ API,适用于高效能推理需求。其架构包括深度定制优化的模型模块、文本生成器和任务调度管理器,支持多种模型框架和量化方式,旨在提升大规模语言模型的推理效率和性能。
|
24天前
|
自然语言处理 资源调度 并行计算
从本地部署到企业级服务:十种主流LLM推理框架的技术介绍与对比
本文深入探讨了十种主流的大语言模型(LLM)服务引擎和工具,涵盖从轻量级本地部署到高性能企业级解决方案,详细分析了它们的技术特点、优势及局限性,旨在为研究人员和工程团队提供适合不同应用场景的技术方案。内容涉及WebLLM、LM Studio、Ollama、vLLM、LightLLM、OpenLLM、HuggingFace TGI、GPT4ALL、llama.cpp及Triton Inference Server与TensorRT-LLM等。
110 7
|
1天前
|
JSON 人工智能 算法
探索大型语言模型LLM推理全阶段的JSON格式输出限制方法
本篇文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
|
27天前
|
人工智能 自然语言处理 测试技术
苹果一篇论文得罪大模型圈?Transformer不会推理,只是高级模式匹配器!所有LLM都判死刑
苹果公司发布论文《GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models》,质疑大型语言模型(LLM)在数学推理方面的能力。尽管LLM在GSM8K等测试中表现良好,但在新基准测试GSM-Symbolic中,其准确率随数值变化而显著下降,表明LLM可能依赖于记忆和模式匹配而非真正的数学理解。这一发现引发了AI领域的广泛讨论。
38 5
|
2月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
608 2
|
2月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
97 2

热门文章

最新文章