HashMap底层数据结构及其增put删remove查get方法的代码实现原理

简介: HashMap 是基于数组 + 链表 + 红黑树实现的高效键值对存储结构。默认初始容量为16,负载因子为0.75。当存储元素超过容量 * 负载因子时,会进行扩容。HashMap 使用哈希算法计算键的索引位置,通过链表或红黑树解决哈希冲突,确保高效存取。插入、获取和删除操作的时间复杂度接近 O(1)。

PS:由于文档是我在本地编写好之后再复制过来的,有些文本格式没能完整的体现,故提供下述图片,供大家阅览,以便有更好的阅读体验:
image.png

1.HashMap底层数据结构是数组+链表(jdk1.7头插法<扩容时链表逆序可能会导致环形链表的问题出现> jdk1.8尾插法)+红黑树(jdk1.8).
2.HashMap中数组的容量默认为16,负载因子默认为0.75,当数组的0-15个下标里有16×0.75=12个被使用时,且HashMap中存储的元素总个数大于64时,则发生扩容操作,数组的容量扩大为原来的2n.
3.负载因子代表数组中存储数据密度的大小:负载因子越大,数组单位容量内存储的数据越多,不同元素之间(key不同,但计算得到的数组下标相同)越容易发生碰撞(哈希碰撞);反之,则单位容量内存储的数据越少,越不易发生碰撞.
4.put(key,value)时的处理逻辑:
(1)hash(key) = (key==NULL)?0:(h=key.hashCode())^(h>>>16),即取key的原始哈希码的高低16位进行异或位运算,计算出一个经高低位混合后高低位分布更加均匀的新哈希码,再用该新哈希码和数组容量减一做与位运算(hash(key)&(2^n-1))得出要存放的数组下标[当HashMap的容量是2的n次幂时,(2^n-1)的二进制就是11111*111全1的形式,这样与hash(key)进行与的位运算时,能够充分的散列,使得添加的元素均匀分布到HashMap的每个位置上,减少hash碰撞],可以一定程度降低根据不同元素计算得出相同数组下标(哈希碰撞)的概率;
(2)得出的数组下标里已经存放有数据元素,则根据key的值遍历比较该下标下的链表或红黑树,如果遇到相同key,则更新key对应的value值后返回(return);若遍历链表后未遇到相同的key,则在链表(jdk1.7头部 jdk1.8尾部)或红黑树合适位置(可能触发红黑树的左旋右旋或颜色改变),插入新的(key,value)键值对元素(插入值时统计存储的总元素个数的变量值会加一) ;
(3)某链表插入新的键值对后,可能导致该链表的长度大于等于8,若此时数组存储的总元素个数大于等于64,则将链表转为红黑树(保证最好最坏情况下时间复杂度为以2为底总元素个数n的对数级别,以提高增删查处理性能);
(4)链表插入新值后,也可能会触发数组扩容操作
5.get(key)时的处理逻辑:同put(key,value)的步骤(1),会根据key值计算得出数组下标,然后用key值遍历比较该数组下标下的链表或或红黑树,找到相同key对应的value值并返回,否则,返回null;
6.remove(key)时的处理逻辑:同get(key)和put(key,value)的步骤(1),会先根据key找到要删除元素所在位置,然后进行删除操作;

目录
相关文章
|
7月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
213 1
|
5月前
|
存储 安全 Java
Java 集合面试题从数据结构到 HashMap 源码剖析详解及长尾考点梳理
本文深入解析Java集合框架,涵盖基础概念、常见集合类型及HashMap的底层数据结构与源码实现。从Collection、Map到Iterator接口,逐一剖析其特性与应用场景。重点解读HashMap在JDK1.7与1.8中的数据结构演变,包括数组+链表+红黑树优化,以及put方法和扩容机制的实现细节。结合订单管理与用户权限管理等实际案例,展示集合框架的应用价值,助你全面掌握相关知识,轻松应对面试与开发需求。
259 3
|
12月前
|
存储 Java Serverless
HashMap的底层数据结构是怎样的
在Java中,HashMap是一种基于哈希表的Map接口实现,以其高效的数据存取能力而广泛使用。本文将深入探讨HashMap的底层数据结构,揭示其如何通过数组、链表和红黑树的结合来优化性能。
|
12月前
|
存储 Java Serverless
深入探索:HashMap的底层数据结构揭秘
HashMap作为Java中一个非常重要的集合类,其底层数据结构的设计对于性能有着至关重要的影响。本文将详细解析HashMap的底层数据结构,帮助开发者更好地理解和使用这一强大的工具。
140 7
|
12月前
|
存储 Java Serverless
HashMap的底层数据结构
HashMap作为Java中一个核心的数据结构,以其高效的键值对存储和检索能力而被广泛使用。本文将深入探讨HashMap的底层数据结构,揭示其如何通过精巧的设计实现快速的数据访问。
130 6
|
12月前
|
存储 Java
HashMap的底层数据结构详解
在Java中,HashMap 是一个非常重要的集合类,用于存储键值对(Key-Value)。它提供了快速的数据插入、删除和查找功能。本文将深入探讨 HashMap 的底层数据结构,帮助读者更好地理解其工作原理。
|
12月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
376 1
|
12月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
259 59
|
5月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
96 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。