心跳信号分类预测Task1 赛题理解

简介: 心跳信号分类预测Task1 赛题理解

一、赛题理解

Tip:本次新人赛是Datawhale与天池联合发起的零基础入门系列赛事第五场 —— 零基础入门心电图心跳信号多分类预测挑战赛。

1.1、赛题概况

比赛要求参赛选手根据给定的数据集,建立模型,预测不同的心跳信号。赛题以预测心电图心跳信号类别为任务,数据集报名后可见并可下载,该该数据来自某平台心电图数据记录,总数据量超过20万,主要为1列心跳信号序列数据,其中每个样本的信号序列采样频次一致,长度相等。为了保证比赛的公平性,将会从中抽取10万条作为训练集,2万条作为测试集A,2万条作为测试集B,同时会对心跳信号类别(label)信息进行脱敏。

通过这道赛题来引导大家走进医疗大数据的世界,主要针对于于竞赛新人进行自我练习,自我提高。

1.1.1、数据概况

此处已经给了两个数据,分别是:train.csv test.csv


1.2、预测指标

选手需提交4种不同心跳信号预测的概率,选手提交结果与实际心跳类型结果进行对比,求预测的概率与真实值差值的绝对值。

具体计算公式如下:

总共有n个病例,针对某一个信号,若真实值为[y1,y2,y3,y4],模型预测概率值为[a1,a2,a3,a4],那么该模型的评价指标abs-sum为

image.png

例如,某心跳信号类别为1,通过编码转成[0,1,0,0],预测不同心跳信号概率为[0.1,0.7,0.1,0.1],那么这个信号预测结果的abs-sum为

image.png

还有其他的预测指标,在这里就不在叙述,但要知道混淆矩阵。

1.3、赛题分析
  • 本题为传统的数据挖掘问题,通过数据科学以及机器学习深度学习的办法来进行建模得到结果。
  • 本题为典型的多分类问题,心跳信号一共有4个不同的类别
  • 主要应用xgb、lgb、catboost,以及pandas、numpy、matplotlib、seabon、sklearn、keras等等数据挖掘常用库或者框架来进行数据挖掘任务。
二、、跑通baseline

本次是在本机上跑的,跑的比较缓慢,第一次跑修改了一个参数,不小心把分数改小了(尴尬),代码

相关文章
|
7月前
|
机器学习/深度学习 数据可视化 PyTorch
零基础入门语义分割-地表建筑物识别 Task5 模型训练与验证-学习笔记
零基础入门语义分割-地表建筑物识别 Task5 模型训练与验证-学习笔记
506 2
|
2月前
|
数据采集 机器学习/深度学习 Python
心跳信号分类预测Task3 特征处理
心跳信号分类预测Task3 特征处理
31 0
|
7月前
|
机器学习/深度学习 前端开发 数据挖掘
工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断(下)
工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断
437 11
|
7月前
|
机器学习/深度学习
工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断(上)
工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断
|
7月前
|
机器学习/深度学习 前端开发 数据挖掘
工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断3
工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断
|
7月前
工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断2
工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断
|
7月前
|
机器学习/深度学习
工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断1
工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断
观测信号(包括异常值)的状态估计方法(Matlab代码实现)
观测信号(包括异常值)的状态估计方法(Matlab代码实现)
|
7月前
|
机器学习/深度学习 监控 算法
ICCV2023 | 基于动作敏感性学习的时序动作定位
ICCV2023 | 基于动作敏感性学习的时序动作定位
288 0