YOLOv8改进 | 进阶实战篇 | 利用YOLOv8进行视频划定区域目标统计计数

简介: YOLOv8改进 | 进阶实战篇 | 利用YOLOv8进行视频划定区域目标统计计数

一、本文介绍

Hello,各位读者,最近会给大家发一些进阶实战的讲解,如何利用YOLOv8现有的一些功能进行一些实战, 让我们不仅会改进YOLOv8,也能够利用YOLOv8去做一些简单的小工作,后面我也会将这些功能利用PyQt或者是pyside2做一些小的界面给大家使用。

在开始之前给大家推荐一下我的专栏,本专栏每周更新3-10篇最新前沿机制 | 包括二次创新全网无重复,以及融合改进(大家拿到之后添加另外一个改进机制在你的数据集上实现涨点即可撰写论文),还有各种前沿顶会改进机制 |,更有包含我所有附赠的文件(文件内集成我所有的改进机制全部注册完毕可以直接运行)和交流群和视频讲解提供给大家。

欢迎大家订阅我的专栏一起学习YOLO!

开始之前先给大家展示一下视频效果图,Gif有点糊,实际清晰图不是这个样子~



二、项目完整代码

帮我们将这个代码,复制粘贴到我们YOLOv8的仓库里然后创建一个py文件存放进去即可。

import argparse
from collections import defaultdict
from pathlib import Path
import cv2
import numpy as np
from shapely.geometry import Polygon
from shapely.geometry.point import Point
from ultralytics import YOLO
from ultralytics.utils.files import increment_path
from ultralytics.utils.plotting import Annotator, colors
track_history = defaultdict(list)
current_region = None
counting_regions = [
    {
        'name': 'YOLOv8 Polygon Region',
        'polygon': Polygon([(50, 80), (250, 20), (450, 80), (400, 350), (100, 350)]),  # Polygon points
        'counts': 0,
        'dragging': False,
        'region_color': (255, 42, 4),  # BGR Value
        'text_color': (255, 255, 255)  # Region Text Color
    },
    {
        'name': 'YOLOv8 Rectangle Region',
        'polygon': Polygon([(200, 250), (440, 250), (440, 550), (200, 550)]),  # Polygon points
        'counts': 0,
        'dragging': False,
        'region_color': (37, 255, 225),  # BGR Value
        'text_color': (0, 0, 0),  # Region Text Color
    }, ]
def mouse_callback(event, x, y, flags, param):
    """Mouse call back event."""
    global current_region
    # Mouse left button down event
    if event == cv2.EVENT_LBUTTONDOWN:
        for region in counting_regions:
            if region['polygon'].contains(Point((x, y))):
                current_region = region
                current_region['dragging'] = True
                current_region['offset_x'] = x
                current_region['offset_y'] = y
    # Mouse move event
    elif event == cv2.EVENT_MOUSEMOVE:
        if current_region is not None and current_region['dragging']:
            dx = x - current_region['offset_x']
            dy = y - current_region['offset_y']
            current_region['polygon'] = Polygon([
                (p[0] + dx, p[1] + dy) for p in current_region['polygon'].exterior.coords])
            current_region['offset_x'] = x
            current_region['offset_y'] = y
    # Mouse left button up event
    elif event == cv2.EVENT_LBUTTONUP:
        if current_region is not None and current_region['dragging']:
            current_region['dragging'] = False
def run(
    weights='yolov8n.pt',
    source=None,
    device='cpu',
    view_img=False,
    save_img=False,
    exist_ok=False,
    classes=None,
    line_thickness=2,
    track_thickness=2,
    region_thickness=2,
):
    """
    Run Region counting on a video using YOLOv8 and ByteTrack.
    Supports movable region for real time counting inside specific area.
    Supports multiple regions counting.
    Regions can be Polygons or rectangle in shape
    Args:
        weights (str): Model weights path.
        source (str): Video file path.
        device (str): processing device cpu, 0, 1
        view_img (bool): Show results.
        save_img (bool): Save results.
        exist_ok (bool): Overwrite existing files.
        classes (list): classes to detect and track
        line_thickness (int): Bounding box thickness.
        track_thickness (int): Tracking line thickness
        region_thickness (int): Region thickness.
    """
    vid_frame_count = 0
    # Check source path
    if not Path(source).exists():
        raise FileNotFoundError(f"Source path '{source}' does not exist.")
    # Setup Model
    model = YOLO(f'{weights}')
    model.to('cuda') if device == '0' else model.to('cpu')
    # Extract classes names
    names = model.model.names
    # Video setup
    videocapture = cv2.VideoCapture(source)
    frame_width, frame_height = int(videocapture.get(3)), int(videocapture.get(4))
    fps, fourcc = int(videocapture.get(5)), cv2.VideoWriter_fourcc(*'mp4v')
    # Output setup
    save_dir = increment_path(Path('ultralytics_rc_output') / 'exp', exist_ok)
    save_dir.mkdir(parents=True, exist_ok=True)
    video_writer = cv2.VideoWriter(str(save_dir / f'{Path(source).stem}.mp4'), fourcc, fps, (frame_width, frame_height))
    # Iterate over video frames
    while videocapture.isOpened():
        success, frame = videocapture.read()
        if not success:
            break
        vid_frame_count += 1
        # Extract the results
        results = model.track(frame, persist=True, classes=classes)
        if results[0].boxes.id is not None:
            boxes = results[0].boxes.xyxy.cpu()
            track_ids = results[0].boxes.id.int().cpu().tolist()
            clss = results[0].boxes.cls.cpu().tolist()
            annotator = Annotator(frame, line_width=line_thickness, example=str(names))
            for box, track_id, cls in zip(boxes, track_ids, clss):
                annotator.box_label(box, str(names[cls]), color=colors(cls, True))
                bbox_center = (box[0] + box[2]) / 2, (box[1] + box[3]) / 2  # Bbox center
                track = track_history[track_id]  # Tracking Lines plot
                track.append((float(bbox_center[0]), float(bbox_center[1])))
                if len(track) > 30:
                    track.pop(0)
                points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
                cv2.polylines(frame, [points], isClosed=False, color=colors(cls, True), thickness=track_thickness)
                # Check if detection inside region
                for region in counting_regions:
                    if region['polygon'].contains(Point((bbox_center[0], bbox_center[1]))):
                        region['counts'] += 1
        # Draw regions (Polygons/Rectangles)
        for region in counting_regions:
            region_label = str(region['counts'])
            region_color = region['region_color']
            region_text_color = region['text_color']
            polygon_coords = np.array(region['polygon'].exterior.coords, dtype=np.int32)
            centroid_x, centroid_y = int(region['polygon'].centroid.x), int(region['polygon'].centroid.y)
            text_size, _ = cv2.getTextSize(region_label,
                                           cv2.FONT_HERSHEY_SIMPLEX,
                                           fontScale=0.7,
                                           thickness=line_thickness)
            text_x = centroid_x - text_size[0] // 2
            text_y = centroid_y + text_size[1] // 2
            cv2.rectangle(frame, (text_x - 5, text_y - text_size[1] - 5), (text_x + text_size[0] + 5, text_y + 5),
                          region_color, -1)
            cv2.putText(frame, region_label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, region_text_color,
                        line_thickness)
            cv2.polylines(frame, [polygon_coords], isClosed=True, color=region_color, thickness=region_thickness)
        if view_img:
            if vid_frame_count == 1:
                cv2.namedWindow('Ultralytics YOLOv8 Region Counter Movable')
                cv2.setMouseCallback('Ultralytics YOLOv8 Region Counter Movable', mouse_callback)
            cv2.imshow('Ultralytics YOLOv8 Region Counter Movable', frame)
        if save_img:
            video_writer.write(frame)
        for region in counting_regions:  # Reinitialize count for each region
            region['counts'] = 0
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    del vid_frame_count
    video_writer.release()
    videocapture.release()
    cv2.destroyAllWindows()
def parse_opt():
    """Parse command line arguments."""
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='yolov8n.pt', help='initial weights path')
    parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--source', type=str, default='替换你视频地址', help='video file path')
    parser.add_argument('--view-img', action='store_true',default=True , help='show results')
    parser.add_argument('--save-img', action='store_true', default=True,  help='save results')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
    parser.add_argument('--line-thickness', type=int, default=2, help='bounding box thickness')
    parser.add_argument('--track-thickness', type=int, default=2, help='Tracking line thickness')
    parser.add_argument('--region-thickness', type=int, default=4, help='Region thickness')
    return parser.parse_args()
def main(opt):
    """Main function."""
    run(**vars(opt))
if __name__ == '__main__':
    opt = parse_opt()
    main(opt)


三、参数解析

下面上面项目核心代码的参数解析,共有10个,能够起到作用的参数并不多。

参数名 参数类型 参数讲解
0 weights str 用于检测视频的权重文件地址(可以是你训练好的,也可以是官方提供的)
1 device str 设备的选择可以用GPU也可以用CPU
2 source str 视频文件的地址,因为是用于视频检测,大家有兴趣其实可以将其改为摄像头的实时检测。
3 view-img bool 是否显示视频结果 ,就是它在控制台会输出结果,如果设置为True就显示图像结果
4 save-img bool 是否保存检测的结果,文件会存放在同级目录下的新文件夹内
5 exist-ok bool 保存文件的名字检测的,大家不用理会这个参数
6 classes int 这个参数比较重要,比如你的权重文件训练文件有多个类别,如果你只想要看某个特定类别的检测结果,只需要输入它的数字编号即可。
7 line-thickness int 边界框的厚度,用于在检测到的对象周围绘制边界线
8 track-thickness int 跟踪线的厚度。
9 region-thickness int 区域框的厚度。

四、项目的使用教程

4.1 步骤一

我们在Yolo仓库的目录下创建一个py文件将代码存放进去,如下图所示。

image.png

4.2 步骤二

我们按照参数解析部分的介绍填好大家的参数,主要配置的有两个一个就是权重文件地址另一个就是视频的地址。

image.png


4.3 步骤三

我们挺好之后运行文件即可,此时会弹出视频框,其中有两个region框是可以滑动的以此来确定想要检测的目标区域,其原理就是Opencv中的mask掩码的原理使用(Gif有点糊大家对付看一下,毕竟只是起到一个示范作用)。


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

目录
相关文章
|
计算机视觉
YOLO 目标检测 识别框不显示文字标签(已解决)
YOLO 目标检测 识别框不显示文字标签(已解决)
|
传感器 算法 数据处理
yolo目标检测+目标跟踪+车辆计数+车辆分割+车道线变更检测+速度估计
yolo目标检测+目标跟踪+车辆计数+车辆分割+车道线变更检测+速度估计
|
4月前
|
机器学习/深度学习 人工智能 算法
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
本文介绍了如何使用 Python 和 YOLO v8 开发专属的 AI 视觉目标检测模型。首先讲解了 YOLO 的基本概念及其高效精准的特点,接着详细说明了环境搭建步骤,包括安装 Python、PyCharm 和 Ultralytics 库。随后引导读者加载预训练模型进行图片验证,并准备数据集以训练自定义模型。最后,展示了如何验证训练好的模型并提供示例代码。通过本文,你将学会从零开始打造自己的目标检测系统,满足实际场景需求。
2816 0
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
|
11月前
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
18401 59
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
XML 机器学习/深度学习 数据格式
YOLOv8训练自己的数据集+常用传参说明
YOLOv8训练自己的数据集+常用传参说明
19721 1
|
机器学习/深度学习 Python
YOLOv8改进 | 进阶实战篇 | 利用YOLOv8进行过线统计(可用于人 、车过线统计)
YOLOv8改进 | 进阶实战篇 | 利用YOLOv8进行过线统计(可用于人 、车过线统计)
590 0
|
11月前
|
机器学习/深度学习 数据可视化 自动驾驶
YOLO11-seg分割如何训练自己的数据集(道路缺陷)
本文介绍了如何使用自己的道路缺陷数据集训练YOLOv11-seg模型,涵盖数据集准备、模型配置、训练过程及结果可视化。数据集包含4029张图像,分为训练、验证和测试集。训练后,模型在Mask mAP50指标上达到0.673,展示了良好的分割性能。
4638 4
|
机器学习/深度学习 算法 安全
基于YOLOv8深度学习的危险区域人员闯入检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、区域闯入
基于YOLOv8深度学习的危险区域人员闯入检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、区域闯入
|
机器学习/深度学习 存储 API
基于YOLOv8的目标检测与计数
基于YOLOv8的目标检测与计数
|
算法 计算机视觉
【YOLOv8训练结果评估】YOLOv8如何使用训练好的模型对验证集进行评估及评估参数详解
【YOLOv8训练结果评估】YOLOv8如何使用训练好的模型对验证集进行评估及评估参数详解