NVIDIA Triton系列07-image_client 用户端参数

简介: 本文详细介绍了NVIDIA Triton推理服务器的Python版image_client.py用户端参数,通过具体实例演示了如何使用这些参数与Triton服务器交互,包括指定服务器地址、选择模型、设置图像缩放方式、批量处理图片等关键操作,为初学者提供了实用的指导。实验环境搭建在Jetson AGX Orin和树莓派上,确保了内容的实践性和可操作性。

NVIDIA Triton系列07-image_client 用户端参数

B站:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频 (bilibili.com)

博客:肆十二-CSDN博客

问答:(10 封私信 / 72 条消息) 肆十二 - 知乎 (zhihu.com)

作为服务器的最重要任务,就是要接受来自不同终端所提出的各种请求,然后根据要求执行对应的计算,再将计算结果返回给终端。

当 Triton 推理服务器运行起来之后,就进入等待请求的状态,因此我们所要提出的请求内容,就必须在用户端软件里透过参数去调整请求的内容,这部分在 Triton 相关使用文件中并没有提供充分的说明,因此本文的重点就在于用 Python 版的 image_client.py 来说明相关参数的内容,其他用户端的参数基本上与这个端类似,可以类比使用。

本文的实验内容,是将 Triton 服务器安装在 IP 为 192.168.0.10 的 Jetson AGX Orin 上,将 Triton 用户端装在 IP 为 192.168.0.20 的树莓派上,读者可以根据已有的设备资源自行调配。

在开始进行实验之前,请先确认以下两个部分的环境:

在服务器设备上启动 Triton 服务器,并处于等待请求的状态:

如果还没启动的话,请直接执行以下指令:

# 根据实际的模型仓根目录位置设定TRITON_MODEL_REPO路径$ export TRITON_MODEL_REPO=${HOME}/triton/server/docs/examples/model_repository执行Triton服务器$ docker run --rm --net=host -v ${TRITON_MODEL_REPO}:/models nvcr.io/nvidia/tritonserver:22.09-py3 tritonserver --model-repository=/models

在用户端设备下载 Python 的用户端范例,并提供若干张要检测的图片:

先执行以下指令,确认Triton服务器已经正常启动,并且从用户端设备可以访问:

$ curl -v 192.168.0.10:8000/v2/health/ready

只要后面出现的信息中有“HTTP/1.1 200 OK”部分,就表示一切正常。

如果还没安装 Triton 的 Python 用户端环境,并且还未下载用户端范例的话,请执行以下指令:

$ cd ${HOME}/triton$ git clone https://github.com/triton-inference-server/client$ cd client/src/python/examples# 安装 Triton 的 Python用户端环境$ pip3 install tritonclient[all] attrdict -i https://pypi.tuna.tsinghua.edu.cn/simple

最后记得在用户端设备上提供几张图片,并且放置在指定文件夹(例如~/images)内,准备好整个实验环境,就可以开始下面的说明。

现在执行以下指令,看一下 image_client 这个终端的参数列表:

$ python3 image_client.py

会出现以下的信息:

img

接下来就来说明这些参数的用途与用法。

用“-u”参数对远程服务器提出请求:

如果用户端与服务器端并不在同一台机器上的时候,就可以用这个参数对远程 Triton 服务器提出推理请求,请执行以下指令:

$ python3 image_client.py -m inception_graphdef -u 192.168.0.10:8000 -s INCEPTION ${HOME}/images/mug.jpg

由于 Triton 的跨节点请求主要透过 HTTP/REST 协议处理,需要透过 8000 端口进行传输,因此在“-u”后面需要接上“IP:8000”就能正常使用。

请自行检查回馈的计算结果是否正确!

2. 用“-m”参数去指推理模型:

从“python3 image_client.py”所产生信息的最后部分,可以看出用“-m”参数去指定推理模型是必须的选项,但是可以指定哪些推理模型呢?就得从 Triton 服务器的启动信息中去寻找答案。

下图是本范例是目前启动的 Triton 推理服务器所支持的模型列表:

img

这里显示有的 8 个推理模型,就是启动服务器时使用“--model-repository=”参数指定的模型仓内容,因此客户端使用“-m”参数指定的模型,必须是在这个表所列的内容之列,例如“-m densenet_onnx”、“-m inception_graphdef”等等。

现在执行以下两道指令,分别看看使用不同模型所得到的结果有什么差异:

$ python3 image_client.py -m densenet_onnx -u 192.168.0.10:8000 -s INCEPTION ${HOME}/images/mug.jpg$ python3 image_client.py -m inception_graphdef -u 192.168.0.10:8000 -s INCEPTION ${HOME}/images/mug.jpg

使用 densenet_onnx 模型与 inception_graphdef 模型所返回的结果,分别如下:

img

虽然两个模型所得到的检测结果一致,但是二者所得到的置信度表达方式并不相同,而且标签编号并不一样(504 与 505)。

这个参数后面还可以使用“-x”去指定“版本号”,不过目前所使用的所有模型都只有一个版本,因此不需要使用这个参数。

3. 使用“-s”参数指定图像缩放方式:

有些神经网络算法在执行推理之前,需要对图像进行特定形式的缩放(scaling)处理,因此需要先用这个参数指定缩放的方式,如果没有指定正确的模式,会导致推理结果的错误。目前这个参数支持{NONE, INSPECTION, VGG}三个选项,预设值为“NONE”。

在本实验 Triton 推理服务器所支持的 densenet_onnx 与 inception_graphdef 模型,都需要选择 INSPECTION 缩放方式,因此执行指令中需要用“-s INSPECTION”去指定,否则会得到错误的结果。

请尝试以下指令,省略前面指定中的“-s INSPECTION”,或者指定为 VGG 模式,看看结果如何?

$ python3 image_client.py -m inception_graphdef -u 192.168.0.10:8000 -s VGG ${HOME}/images/mug.jpg

4. 对文件夹所有图片进行推理

如果有多个要进行推理计算的标的物(图片),Triton 用户端可用文件夹为单位来提交要推理的内容,例如以下指令就能一次对 ${HOME}/images 目录下所有图片进行推理:

$ python3 image_client.py -m inception_graphdef -u 192.168.0.10:8000 -s INCEPTION ${HOME}/images

例如我们在文件夹中准备了 car.jpg、mug.jpg、vulture.jpg 三种图片,如下:

img

执行后反馈的结果如下:

img

显示推理检测的结果是正确的!

5. 用“-b”参数指定批量处理的值

执行前面指令的结果可以看到“batch size 1”,表示用户端每次提交一张图片进行推理,所以出现 Request 1、Request 2 与 Request 3 总共提交三次请求。

现在既然有 3 张图片,可否一次提交 3 张图片进行推理呢?我们可以用“-b”参数来设定,如果将前面的指令中添加“-b 3”这个参数,如下:

$ python3 image_client.py -m inception_graphdef -u 192.168.0.10:8000 -s INCEPTION ${HOME}/images -b 3

现在显示的结果如下:

img

现在看到只提交一次“batch size 3”的请求,就能对三张图片进行推理。如果 batch 值比图片数量大呢?例如改成“-b 5”的时候,看看结果如何?如下:

img

现在可以看到所推理的图片数量是 5,其中 1/4、2/5 是同一张图片,表示重复使用了。这样就应该能清楚这个“batch size”值的使用方式。

但如果这里将模型改成 densenet_onnx 的时候,执行以下指令:

$ python3 image_client.py -m densenet_onnx -u 192.168.0.10:8000 -s INCEPTION ${HOME}/images -b 3

会得到“ERROR: This model doesn\'t support batching.”的错误信息,这时候就回头检查以下模型仓里 densenet_onnx 目录下的 config.pbtxt 配置文件,会发现里面设置了“max_batch_size : 0”,并不支持批量处理。

而 inception_graphdef 模型的配置文件里设置“max_batch_size : 128”,如果指令给定“-b”参数大于这个数值,也会出现错误信息。

6. 其他:

另外还有指定通讯协议的“-i”参数、使用异步推理 API 的“-a”参数、使用流式推理 API 的“--streaming”参数等等,属于较进阶的用法,在这里先不用过度深入。

以上所提供的 5 个主要参数,对初学者来说是非常足够的,好好掌握这几个参数就已经能开始进行更多图像方面的推理实验。

目录
相关文章
|
2天前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1519 4
|
29天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
5天前
|
人工智能 Rust Java
10月更文挑战赛火热启动,坚持热爱坚持创作!
开发者社区10月更文挑战,寻找热爱技术内容创作的你,欢迎来创作!
502 19
|
2天前
|
存储 SQL 关系型数据库
彻底搞懂InnoDB的MVCC多版本并发控制
本文详细介绍了InnoDB存储引擎中的两种并发控制方法:MVCC(多版本并发控制)和LBCC(基于锁的并发控制)。MVCC通过记录版本信息和使用快照读取机制,实现了高并发下的读写操作,而LBCC则通过加锁机制控制并发访问。文章深入探讨了MVCC的工作原理,包括插入、删除、修改流程及查询过程中的快照读取机制。通过多个案例演示了不同隔离级别下MVCC的具体表现,并解释了事务ID的分配和管理方式。最后,对比了四种隔离级别的性能特点,帮助读者理解如何根据具体需求选择合适的隔离级别以优化数据库性能。
179 1
|
8天前
|
JSON 自然语言处理 数据管理
阿里云百炼产品月刊【2024年9月】
阿里云百炼产品月刊【2024年9月】,涵盖本月产品和功能发布、活动,应用实践等内容,帮助您快速了解阿里云百炼产品的最新动态。
阿里云百炼产品月刊【2024年9月】
|
21天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
9天前
|
Linux 虚拟化 开发者
一键将CentOs的yum源更换为国内阿里yum源
一键将CentOs的yum源更换为国内阿里yum源
457 5
|
7天前
|
存储 人工智能 搜索推荐
数据治理,是时候打破刻板印象了
瓴羊智能数据建设与治理产品Datapin全面升级,可演进扩展的数据架构体系为企业数据治理预留发展空间,推出敏捷版用以解决企业数据量不大但需构建数据的场景问题,基于大模型打造的DataAgent更是为企业用好数据资产提供了便利。
314 2
|
23天前
|
人工智能 IDE 程序员
期盼已久!通义灵码 AI 程序员开启邀测,全流程开发仅用几分钟
在云栖大会上,阿里云云原生应用平台负责人丁宇宣布,「通义灵码」完成全面升级,并正式发布 AI 程序员。
|
25天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2608 22
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析