NexaAI, 一行命令运行魔搭社区模型,首次在设备上运行 Qwen2-Audio

简介: Qwen2-Audio是一个 70亿参数量 SOTA 多模态模型,可处理音频和文本输入。

音频语言模型正在获得显著的关注,但边缘部署选项仍然非常有限。虽然 llama.cpp 和 Ollama 支持文本和视觉模型,但它们目前不支持音频模型。

Qwen2-Audio是一个 70亿参数量 SOTA 多模态模型,可处理音频和文本输入。它无需 ASR 模块即可实现语音交互,提供音频分析功能,并支持超过8种语言和方言,例如中文、英语、粤语、法语、意大利语、西班牙语、德语和日语。

魔搭社区和Nexa SDK合作,一键运行魔搭社区GGUF模型,包括本次发布的Qwen2-Audio的GGUF格式。

Github repo:

https://github.com/NexaAI/nexa-sdk

NexaAI 魔搭模型repo:

https://modelscope.cn/organization/NexaAIDev

01.Nexa SDK:一句话运行魔搭社区模型

使用魔搭社区免费CPU算力使用Nexa一键运行魔搭社区GGUF模型。

首先,安装Nexa SDK

pip install nexaai

一句话运行魔搭社区模型

nexa run -ms Qwen/Qwen2.5-3B-Instruct-GGUF

image.png

02.Nexa SDK:将Qwen2-Audio引入边缘设备

image.png

在魔搭社区的免费Notebook算力上运行Qwen-Audio-7B-GGUF

首先,安装Nexa SDK(更多安装方式参考:https://github.com/NexaAI/nexa-sdk?tab=readme-ov-file#install-option-1-executable-installer

curl -fsSL https://public-storage.nexa4ai.com/install.sh | sh

然后,运行Qwen2-Audio模型

nexa run qwen2audio

或者运行的同时支持Streamlit 本地WebUI

nexa run qwen2audio -st

也可以直接在ModelScope上运行Qwen-Audio-7B-GGUF

nexa run -ms NexaAIDev/Qwen2-Audio-7B-GGUF

将音频文件存储在终端中(或在 Linux 上输入文件路径)。将文本提示以及语音文件地址直接输入模型。

01.快速说明

💻  默认的 q4_K_M 版本需要 4.2GB 的 RAM。

下图列出了在您的设备上运行 Qwen2-Audio 需要多少 RAM

Qwen2-Audio量化版本

模型权重文件

所需RAM

gguf-fp16

14.50 GB

16.80 GB

gguf-q4_0

4.20 GB

4.20 GB

gguf-q8_0

7.70 GB

8.40 GB

gguf-q2_K

2.90 GB

2.10 GB

gguf-q3_K_L

3.90 GB

3.15 GB

gguf-q3_K_M

3.70 GB

3.15 GB

gguf-q3_K_S

3.30 GB

3.15 GB

gguf-q4_1

4.60 GB

4.20 GB

gguf-q4_K_M

4.50 GB

4.20 GB

gguf-q4_K_S

4.30 GB

4.20 GB

gguf-q5_0

5.10 GB

5.25 GB

gguf-q5_1

5.50 GB

5.25 GB

gguf-q5_K_M

5.20 GB

5.28 GB

gguf-q5_K_S

5.10 GB

5.28 GB

gguf-q6_K

5.90 GB

6.30 GB

🎵 为了获得最佳性能,请使用 16kHz.wav音频格式。支持其他音频格式和采样率,并将自动转换为所需格式。

02.使用案例

语音处理与理解

会议录音

image.png

多模式聊天

why do you think cat sleep so much?

image.png

音频分析与识别

键盘打字的声音

image.png

音乐分析和识别

Punk music (loud sound warning)

image.png

翻译

Chinese

image.png

要了解更多用例和模型功能,请查看Qwen的博客和Github:

博客:

https://qwenlm.github.io

Github:

https://github.com/QwenLM/Qwen2-Audio

对于开发人员来说,下一步将是服务器部署和 Python 接口。请关注Nexa SDK以获取更新,并提交您的任何需求。

感谢 Nexa AI 团队。

点击链接阅读原文:https://modelscope.cn/organization/NexaAIDev

目录
相关文章
|
29天前
|
文字识别 算法 语音技术
基于模型蒸馏的大模型文案生成最佳实践
本文介绍了基于模型蒸馏技术优化大语言模型在文案生成中的应用。针对大模型资源消耗高、部署困难的问题,采用EasyDistill算法框架与PAI产品,通过SFT和DPO算法将知识从大型教师模型迁移至轻量级学生模型,在保证生成质量的同时显著降低计算成本。内容涵盖教师模型部署、训练数据构建及学生模型蒸馏优化全过程,助力企业在资源受限场景下实现高效文案生成,提升用户体验与业务增长。
254 23
|
2月前
|
人工智能 弹性计算 API
再不玩通义 VACE 模型你就过时了!一个模型搞定所有视频任务
介绍通义的开源模型在 ecs 或 acs 场景如何一键部署和使用,如何解决不同视频生成场景的问题。
|
1月前
|
人工智能 JavaScript 测试技术
Cradle:颠覆AI Agent 操作本地软件,AI驱动的通用计算机控制框架,如何让基础模型像人一样操作你的电脑?
Cradle 是由 BAAI‑Agents 团队开源的通用计算机控制(GCC)多模态 AI Agent 框架,具备视觉输入、键鼠操作输出、自主学习与反思能力,可操作各类本地软件及游戏,实现任务自动化与复杂逻辑执行。
141 0
|
3月前
|
数据采集 人工智能 编解码
2025年颠覆闭源大模型?MonkeyOCR:这款开源AI文档解析模型,精度更高,速度更快!
还在依赖昂贵且慢的闭源OCR工具?华中科技大学开源的MonkeyOCR文档解析模型,以其超越GPT4o的精度和更快的推理速度,在单机单卡(3090)上即可部署,正颠覆业界认知。本文将深入解析其设计哲学、核心突破——大规模自建数据集,并分享实测体验与避坑指南。
985 87
|
2月前
|
人工智能 安全 API
用Qwen Code,体验全新AI编程——高效模型接入首选ModelGate
Qwen Code 是通义千问推出的AI编程助手,支持自然语言编程与智能代码生成,大幅提升开发效率。结合 ModelGate,可实现多模型统一管理、安全调用,解决API切换、权限控制、稳定性等问题,是Claude Code的理想国产替代方案。
|
2月前
|
人工智能 自然语言处理 vr&ar
通义首个音频生成模型 ThinkSound 开源,你的专业音效师
通义实验室推出首个音频生成模型ThinkSound,突破传统视频到音频生成技术局限,首次将思维链(CoT)应用于音频生成领域,实现高保真、强同步的空间音频生成。基于自研AudioCoT数据集,结合多模态大语言模型与统一音频生成模型,支持交互式编辑,显著提升音画匹配度与时序一致性。代码已开源,助力游戏、VR、AR等场景创新应用。
656 3

热门文章

最新文章