Wide和Deep模型

简介: Wide和Deep模型

1. 点击率预估简介

点击率预估是对每次广告点击情况作出预测,可以输出点击或者不点击,也可以输出该次点击的概率,后者有时候也称为pClick.

  • 点击率预估模型需要做什么?
    点击率预估问题就是一个二分类的问题,在机器学习中可以使用逻辑回归作为模型的输出,其输出的就是一个概率值,我们可以将机器学习输出的这个概率值认为是某个用户点击某个广告的概率。
  • 点击率预估与推荐算法有什么不同?
    广告点击率预估是需要得到某个用户对某个广告的点击率,然后结合广告的出价用于排序;而推荐算法很多大多数情况下只需要得到一个最优的推荐次序,即TopN推荐的问题。当然也可以利用广告的点击率来排序,作为广告的推荐。

2、Wide & Deep模型

Memorization 和 Generalization是推荐系统很常见的两个概念。

其中Memorization指的是通过用户与商品的交互信息矩阵学习规则, 而Generalization则是泛化规则。

我们前面介绍的FM算法就是很好的Generalization的例子,它可以根据交互信息学习到一个比较短的矩阵V VV,其中v i v_{i}vi储存着每个用户特征的压缩表示(embedding),而协同过滤与SVD都是靠记住用户之前与哪些物品发生了交互从而推断出的推荐结果,这两者推荐结果当然存在一些差异,我们的Wide&Deep模型就能够融合这两种推荐结果做出最终的推荐,得到一个比之前的推荐结果都好的模型。

可以说Memorization趋向于更加保守,推荐用户之前有过行为的items。相比之下,generalization更加趋向于提高推荐系统的多样性(diversity)。Memorization只需要使用一个线性模型即可实现,而Generalization需要使用DNN实现。

下面是wide&deep模型的结构图,由左边的wide部分(一个简单的线性模型),右边的deep部分(一个典型的DNN模型)。

wide模型:其实就是 lr 加上 人工构造得交叉特征, 受限与训练数据,wide模型无法实现训练数据中未曾出现过得泛化。

deep模型介绍:像FM,和dnn这种embedding类得模型,可以通过学习到得低维稠密向量实现模型得泛化能力,包括可以实现对未见过得内容进行泛化推荐。但是当 query-item矩阵比较稀疏得时候,模型会过分泛化,推荐出很多无相关得内同,准确性得不到保证。

  • 如何理解Wide部分有利于增强模型的“记忆能力”,Deep部分有利于增强模型的“泛化能力”?
  • wide部分是一个广义的线性模型,输入的特征主要有两部分组成,一部分是原始的部分特征,另一部分是原始特征的交互特征(cross-product transformation),对于交互特征可以定义为: image.png 这个式子什么意思读者可以自行找原论文看看,大体意思就是两个特征都同时为1这个新的特征才能为1,否则就是0,说白了就是一个特征组合。
  • 对于wide部分训练时候使用的优化器是带L 1 L_1L1正则的FTRL算法(Follow-the-regularized-leader),而L1 FTLR是非常注重模型稀疏性质的,也就是说W&D模型采用L1 FTRL是想让Wide部分变得更加的稀疏,即Wide部分的大部分参数都为0,这就大大压缩了模型权重及特征向量的维度。**Wide部分模型训练完之后留下来的特征都是非常重要的,那么模型的“记忆能力”就可以理解为发现"直接的",“暴力的”,“显然的”关联规则的能力。**例如Google W&D期望wide部分发现这样的规则:用户安装了应用A,此时曝光应用B,用户安装应用B的概率大。Deep部分是一个DNN模型,输入的特征主要分为两大类,一类是数值特征(可直接输入DNN),一类是类别特征(需要经过Embedding之后才能输入到DNN中),Deep部分的数学形式如下: image.png 我们知道DNN模型随着层数的增加,中间的特征就越抽象,也就提高了模型的泛化能力。**对于Deep部分的DNN模型作者使用了深度学习常用的优化器AdaGrad,这也是为了使得模型可以得到更精确的解。

Wide部分与Deep部分的结合

W&D模型是将两部分输出的结果结合起来联合训练,将deep和wide部分的输出重新使用一个逻辑回归模型做最终的预测,输出概率值。联合训练的数学形式如下: image.png

Tensorflow内置的WideDeepModel

全局实现

tf.keras.experimental.WideDeepModel(
    linear_model, dnn_model, activation=None, **kwargs
)

这一步很容易看出来就是将linear_model与dnn_model拼接在了一起,对应于Wide-Deep FM中的最后一步。比如我们可以将linear_model与dnn_model做一个最简单的实现

linear_model = LinearModel()
dnn_model = keras.Sequential([keras.layers.Dense(units=64),
                             keras.layers.Dense(units=1)])
combined_model = WideDeepModel(linear_model, dnn_model)
combined_model.compile(optimizer=['sgd', 'adam'], 'mse', ['mse'])
# define dnn_inputs and linear_inputs as separate numpy arrays or
# a single numpy array if dnn_inputs is same as linear_inputs.
combined_model.fit([linear_inputs, dnn_inputs], y, epochs)
# or define a single `tf.data.Dataset` that contains a single tensor or
# separate tensors for dnn_inputs and linear_inputs.
dataset = tf.data.Dataset.from_tensors(([linear_inputs, dnn_inputs], y))
combined_model.fit(dataset, epochs)
linear_model = LinearModel()
linear_model.compile('adagrad', 'mse')
linear_model.fit(linear_inputs, y, epochs)
dnn_model = keras.Sequential([keras.layers.Dense(units=1)])
dnn_model.compile('rmsprop', 'mse')
dnn_model.fit(dnn_inputs, y, epochs)
combined_model = WideDeepModel(linear_model, dnn_model)
combined_model.compile(optimizer=['sgd', 'adam'], 'mse', ['mse'])
combined_model.fit([linear_inputs, dnn_inputs], y, epochs)

4. 深度学习推荐系统的发展

Wide&Deep模型在深度学习发展中起到了非常重要的作用,从下图中我们就可以看到它对后续模型发展的一个影响。

最后。如果文章中有不足之处,请务必指出,一定迅速改正。谢谢

相关文章
|
2天前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1517 4
|
29天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
5天前
|
人工智能 Rust Java
10月更文挑战赛火热启动,坚持热爱坚持创作!
开发者社区10月更文挑战,寻找热爱技术内容创作的你,欢迎来创作!
492 19
|
2天前
|
存储 SQL 关系型数据库
彻底搞懂InnoDB的MVCC多版本并发控制
本文详细介绍了InnoDB存储引擎中的两种并发控制方法:MVCC(多版本并发控制)和LBCC(基于锁的并发控制)。MVCC通过记录版本信息和使用快照读取机制,实现了高并发下的读写操作,而LBCC则通过加锁机制控制并发访问。文章深入探讨了MVCC的工作原理,包括插入、删除、修改流程及查询过程中的快照读取机制。通过多个案例演示了不同隔离级别下MVCC的具体表现,并解释了事务ID的分配和管理方式。最后,对比了四种隔离级别的性能特点,帮助读者理解如何根据具体需求选择合适的隔离级别以优化数据库性能。
179 1
|
8天前
|
JSON 自然语言处理 数据管理
阿里云百炼产品月刊【2024年9月】
阿里云百炼产品月刊【2024年9月】,涵盖本月产品和功能发布、活动,应用实践等内容,帮助您快速了解阿里云百炼产品的最新动态。
阿里云百炼产品月刊【2024年9月】
|
21天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
9天前
|
Linux 虚拟化 开发者
一键将CentOs的yum源更换为国内阿里yum源
一键将CentOs的yum源更换为国内阿里yum源
448 5
|
7天前
|
存储 人工智能 搜索推荐
数据治理,是时候打破刻板印象了
瓴羊智能数据建设与治理产品Datapin全面升级,可演进扩展的数据架构体系为企业数据治理预留发展空间,推出敏捷版用以解决企业数据量不大但需构建数据的场景问题,基于大模型打造的DataAgent更是为企业用好数据资产提供了便利。
314 2
|
23天前
|
人工智能 IDE 程序员
期盼已久!通义灵码 AI 程序员开启邀测,全流程开发仅用几分钟
在云栖大会上,阿里云云原生应用平台负责人丁宇宣布,「通义灵码」完成全面升级,并正式发布 AI 程序员。
|
25天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2608 22
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析