深度学习推荐模型-Wide&Deep

简介: Wide部分主要作用是让模型具备较强的“记忆能力”;Deep部分的主要作用是让模型具有“泛化能力”。

ffe68336224a352089bfa7da456cb76e_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxX3h1YW5zaHVhbmc=,size_16,color_FFFFFF,t_70.png

Wide & Deep介绍


Wide部分主要作用是让模型具备较强的“记忆能力”;Deep部分的主要作用是让模型具有“泛化能力”。


“记忆能力”:模型直接学习并利用历史数据中的物品或者强特征的“共现频率”的能力。一般来说,协同过滤、逻辑回归等简单模型具有较强的“记忆能力”。这类模型结构简单,没有过多的特征交叉,原始数据往往可以直接影响推荐结果,产生类似于”若点击过A则推荐B“这类规则式的推荐,相当于模型直接记住了历史数据的分布特点,并利用这些记忆进行推荐。多层神经网络特征会被多层处理,不断与其他特征交叉,使得模型对原始强特征的记忆反而不如简单模型。


“泛化能力”:模型传递特征的相关性,以及发觉稀疏甚至从未出现过的稀有特征与最终标签相关性的能力。矩阵分解比协同过滤的泛化能力强,因为MF引入了隐向量,使得数据稀少的用户或者物品也能生成隐向量,从而获得由数据支撑的推荐得分,这就是典型的将全局数据传递到稀有物品上,从而提高泛化能力。再如,深度神经网络通过特征次组合,可以发掘数据中潜在的模式,即使非常稀疏的特征向量输入,也能得到较稳定平滑的推荐概率。


Wide & Deep Model

Wide&Deep由浅层(或单层)的Wide部分神经网络和深层的Deep部分多层神经网络组成,输出层采用softmax或logistics regression综合Wide和Deep部分的输出。

image.png

Memorization:

之前大规模稀疏输入的处理是:通过线性模型 + 特征交叉。所带来的Memorization以及记忆能力非常有效和可解释。但是Generalization(泛化能力)需要更多的人工特征工程。


Generalization:

相比之下,DNN几乎不需要特征工程。通过对低纬度的dense embedding进行组合可以学习到更深层次的隐藏特征。但是,缺点是有点over-generalize(过度泛化)。推荐系统中表现为:会给用户推荐不是那么相关的物品,尤其是user-item矩阵比较稀疏并且是high-rank(高秩矩阵)


两者区别:

Memorization趋向于更加保守,推荐用户之前有过行为的items。相比之下,generalization更加趋向于提高推荐系统的多样性(diversity)。


Wide & Deep:

Wide & Deep包括两部分:线性模型 + DNN部分。结合上面两者的优点,平衡memorization和generalization。

原因:综合memorization和generalizatio的优点,服务于推荐系统。相比于wide-only和deep-only的模型,wide & deep提升显著。


Wide&Deep模型进化-Deep & Cross模型

利用Cross Net代替Wide部分,增加特征交叉力度


目录
相关文章
|
6月前
|
机器学习/深度学习 算法 定位技术
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
865 27
|
5月前
|
机器学习/深度学习 数据可视化 算法
深度学习模型结构复杂、参数众多,如何更直观地深入理解你的模型?
深度学习模型虽应用广泛,但其“黑箱”特性导致可解释性不足,尤其在金融、医疗等敏感领域,模型决策逻辑的透明性至关重要。本文聚焦深度学习可解释性中的可视化分析,介绍模型结构、特征、参数及输入激活的可视化方法,帮助理解模型行为、提升透明度,并推动其在关键领域的安全应用。
550 0
|
4月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
345 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
3月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
6月前
|
机器学习/深度学习 人工智能 PyTorch
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
本文以 MNIST 手写数字识别为切入点,介绍了深度学习的基本原理与实现流程,帮助读者建立起对神经网络建模过程的系统性理解。
700 15
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
|
4月前
|
机器学习/深度学习 数据采集 传感器
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
322 0
|
11月前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习实践技巧:提升模型性能的详尽指南
深度学习模型在图像分类、自然语言处理、时间序列分析等多个领域都表现出了卓越的性能,但在实际应用中,为了使模型达到最佳效果,常规的标准流程往往不足。本文提供了多种深度学习实践技巧,包括数据预处理、模型设计优化、训练策略和评价与调参等方面的详细操作和代码示例,希望能够为应用实战提供有效的指导和支持。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
AI 基础知识从 0.3 到 0.4——如何选对深度学习模型?
本系列文章从机器学习基础出发,逐步深入至深度学习与Transformer模型,探讨AI关键技术原理及应用。内容涵盖模型架构解析、典型模型对比、预训练与微调策略,并结合Hugging Face平台进行实战演示,适合初学者与开发者系统学习AI核心知识。
567 15
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习模型、算法与应用的全方位解析
深度学习,作为人工智能(AI)的一个重要分支,已经在多个领域产生了革命性的影响。从图像识别到自然语言处理,从语音识别到自动驾驶,深度学习无处不在。本篇博客将深入探讨深度学习的模型、算法及其在各个领域的应用。
1398 3
|
7月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
342 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统

热门文章

最新文章