Matplotlib 教程 之 Matplotlib imshow() 方法 6

简介: Matplotlib `imshow()` 方法教程:详解如何使用 `imshow()` 函数显示二维图像,包括灰度图、彩色图及不同插值方法的应用示例。通过调整参数如颜色映射(cmap)、插值方法(interpolation)等,实现图像的不同视觉效果。

Matplotlib 教程 之 Matplotlib imshow() 方法 6

Matplotlib imshow() 方法

imshow() 函数是 Matplotlib 库中的一个函数,用于显示图像。

imshow() 函数常用于绘制二维的灰度图像或彩色图像。

imshow() 函数可用于绘制矩阵、热力图、地图等。

imshow() 方法语法格式如下:

imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, resample=None, url=None, , data=None, *kwargs)

参数说明:

X:输入数据。可以是二维数组、三维数组、PIL图像对象、matplotlib路径对象等。
cmap:颜色映射。用于控制图像中不同数值所对应的颜色。可以选择内置的颜色映射,如gray、hot、jet等,也可以自定义颜色映射。
norm:用于控制数值的归一化方式。可以选择Normalize、LogNorm等归一化方法。
aspect:控制图像纵横比(aspect ratio)。可以设置为auto或一个数字。
interpolation:插值方法。用于控制图像的平滑程度和细节程度。可以选择nearest、bilinear、bicubic等插值方法。
alpha:图像透明度。取值范围为0~1。
origin:坐标轴原点的位置。可以设置为upper或lower。
extent:控制显示的数据范围。可以设置为[xmin, xmax, ymin, ymax]。
vmin、vmax:控制颜色映射的值域范围。
filternorm 和 filterrad:用于图像滤波的对象。可以设置为None、antigrain、freetype等。
imlim: 用于指定图像显示范围。
resample:用于指定图像重采样方式。
url:用于指定图像链接。

以下创建了一个 4x4 的二维 numpy 数组,并对其进行了三种不同的 imshow 图像展示。

第一张展示了灰度的色彩映射方式,并且没有进行颜色的混合(blending)。
第二张展示了使用viridis颜色映射的图像,同样没有进行颜色的混合。
第三张展示了使用viridis颜色映射的图像,并且使用了双立方插值方法进行颜色混合。
实例
import matplotlib.pyplot as plt
import numpy as np

n = 4

创建一个 n x n 的二维numpy数组

a = np.reshape(np.linspace(0,1,n**2), (n,n))

plt.figure(figsize=(12,4.5))

第一张图展示灰度的色彩映射方式,并且没有进行颜色的混合

plt.subplot(131)
plt.imshow(a, cmap='gray', interpolation='nearest')
plt.xticks(range(n))
plt.yticks(range(n))

灰度映射,无混合

plt.title('Gray color map, no blending', y=1.02, fontsize=12)

第二张图展示使用viridis颜色映射的图像,同样没有进行颜色的混合

plt.subplot(132)
plt.imshow(a, cmap='viridis', interpolation='nearest')
plt.yticks([])
plt.xticks(range(n))

Viridis映射,无混合

plt.title('Viridis color map, no blending', y=1.02, fontsize=12)

第三张图展示使用viridis颜色映射的图像,并且使用了双立方插值方法进行颜色混合

plt.subplot(133)
plt.imshow(a, cmap='viridis', interpolation='bicubic')
plt.yticks([])
plt.xticks(range(n))

Viridis 映射,双立方混合

plt.title('Viridis color map, bicubic blending', y=1.02, fontsize=12)

plt.show()

目录
相关文章
|
26天前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 10
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。Seaborn 支持多种图表类型,如散点图、折线图、柱状图、热图等,并特别强调视觉效果。例如,使用 `sns.violinplot()` 可以轻松绘制展示数据分布的小提琴图。
30 1
|
27天前
|
数据可视化 数据挖掘 Python
Matplotlib 教程 之 Seaborn 教程 8
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了简洁的高级接口和美观的默认样式,支持多种图表类型,如散点图、折线图、柱状图、热图等,特别适合于数据分析和展示。例如,使用 `sns.boxplot()` 可以轻松绘制箱线图,展示数据的分布情况。
35 3
|
26天前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 9
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。本文介绍了 Seaborn 的主要功能和绘图函数,包括热图 `sns.heatmap()` 的使用方法和示例代码。
17 1
|
30天前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 2
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制,提供高级接口和美观的默认主题,支持散点图、折线图等多种图表类型,安装简便,可通过 `pip install seaborn` 完成。Seaborn 设计注重美观与易用性,内置多种主题如 darkgrid、whitegrid 等,便于用户快速生成高质量的统计图表。
18 3
|
27天前
|
数据可视化 DataX Python
Matplotlib 教程 之 Seaborn 教程 6
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于绘制统计图形。它提供高级接口和美观的默认主题,简化了复杂图形的绘制过程。本文档介绍了 Seaborn 的主要绘图函数,如 `sns.lineplot()` 用于绘制变量变化趋势的折线图,并给出了示例代码。
26 0
|
29天前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 4
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于绘制统计图形。它提供了高级接口和美观的默认主题,简化了复杂图形的绘制过程。以下示例展示了如何使用 Seaborn 和 Matplotlib 绘制一个简单的柱状图,展示不同产品的销售情况。
13 0
|
1月前
|
Python
Matplotlib 教程 之 Matplotlib 中文显示 4
Matplotlib 中文显示教程,介绍如何通过设置字体参数或下载支持中文的字体库(如思源黑体)来实现在 Matplotlib 中正确显示中文。示例代码展示了如何使用思源黑体设置图表标题和轴标签的中文显示。
10 0
|
2月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
2月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
49 1
|
2月前
|
存储 数据可视化 数据挖掘
揭秘!Matplotlib与Seaborn联手,如何让Python数据分析结果一目了然,惊艳全场?
在数据驱动时代,高效直观地展示分析结果至关重要。Python中的Matplotlib与Seaborn是两大可视化工具,结合使用可生成美观且具洞察力的图表。本文通过分析某电商平台的商品销量数据集,展示了如何利用这两个库揭示商品类别与月份间的销售关系及价格对销量的影响。首先使用Matplotlib绘制月份销量分布直方图,再借助Seaborn的箱线图进一步探索不同类别和价格区间下的销量稳定性。
63 10