卷积神经网络(CNN)的发展历程

简介: 【10月更文挑战第1天】卷积神经网络(CNN)的发展历程

卷积神经网络(CNN)的发展历程是深度学习领域的一个重要篇章,以下是对其发展历程的深入讲解:

早期探索(1980年代末至1990年代)

  • LeNet(1989年):CNN的起源可以追溯到1989年,当时Yann LeCun等人提出了LeNet,这是第一个成功的卷积神经网络,主要用于手写数字识别。LeNet引入了卷积层、池化层和反向传播算法,为后来的CNN发展奠定了基础。

    深度学习的复兴(2000年代初至2010年代初)

  • AlexNet(2012年):在2012年的ImageNet竞赛中,Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton提出的AlexNet取得了突破性的成绩,大幅提升了图像识别的准确率。AlexNet使用了多个卷积层和池化层,以及ReLU激活函数和Dropout防止过拟合。
  • ZF Net(2013年):Matthew D. Zeiler和Rob Fergus提出的ZF Net对AlexNet进行了改进,通过可视化技术更好地理解了CNN的工作原理。
  • VGG Net(2014年):由Simonyan和Zisserman提出的VGG Net通过使用更小的卷积核和更深的网络结构,进一步提高了图像识别的准确性。VGG Net证明了通过增加网络的深度可以提升性能。
  • GoogLeNet(Inception Net,2014年):GoogLeNet引入了Inception模块,通过不同尺寸的卷积核和池化层并行处理,提高了网络的效率和性能。这种网络结构减少了参数数量,加快了计算速度。

    深度学习的高峰(2015年至今)

  • ResNet(2015年):He et al. 提出的ResNet(残差网络)通过引入残差学习解决了深层网络训练中的梯度消失问题,使得网络能够达到前所未有的深度(超过100层)。ResNet在多个图像识别任务上取得了当时最好的性能。
  • DenseNet(2017年):DenseNet通过将每层与前一层连接,使得网络中的信息传递更加直接,进一步提高了参数效率。
  • EfficientNet(2019年):EfficientNet通过使用复合缩放方法,系统地缩放网络的宽度、深度和分辨率,实现了更好的效率和准确性平衡。

    特殊应用和优化

  • MobileNets(2017年):针对移动和边缘设备,MobileNets通过使用深度可分离卷积来构建轻量级CNN模型。
  • NASNet(2018年):NASNet使用神经网络架构搜索(NAS)来自动设计CNN结构,以优化性能。

    总结

    CNN的发展历程见证了从简单的网络结构到复杂的架构,从专注于性能到性能与效率并重的转变。随着研究的深入,CNN不仅在图像识别领域取得了巨大成功,还在视频分析、自然语言处理等其他领域展现了强大的潜力。未来,CNN的发展将继续朝着更高效、更智能、更易于解释的方向前进。
相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
111 55
|
15天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
93 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
18天前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
49 3
图卷积网络入门:数学基础与架构设计
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
1月前
|
机器学习/深度学习 计算机视觉 网络架构
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
83 11
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
76 7
|
21天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
29 1
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。