Matplotlib 教程 之 Matplotlib 饼图 1

简介: 使用 Matplotlib 库中的 `pyplot` 模块 `pie()` 方法来绘制饼图,并详细解释了 `pie()` 方法的参数,包括数据输入 `x`、扇区间距 `explode`、标签 `labels`、颜色 `colors`、百分比格式 `autopct`、标签距离 `labeldistance`、阴影 `shadow`、半径 `radius`、起始角度 `startangle`、逆时针方向 `counterclock`、扇形属性 `wedgeprops`、文本标签属性 `textprops`、饼图中心位置 `center`

Matplotlib 教程 之 Matplotlib 饼图 1

Matplotlib 饼图

饼图(Pie Chart)是一种常用的数据可视化图形,用来展示各类别在总体中所占的比例。

我们可以使用 pyplot 中的 pie() 方法来绘制饼图。

pie() 方法语法格式如下:

matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=0, radius=1, counterclock=True, wedgeprops=None, textprops=None, center=0, 0, frame=False, rotatelabels=False, *, normalize=None, data=None)[source]

参数说明:

x:浮点型数组或列表,用于绘制饼图的数据,表示每个扇形的面积。

explode:数组,表示各个扇形之间的间隔,默认值为0。

labels:列表,各个扇形的标签,默认值为 None。

colors:数组,表示各个扇形的颜色,默认值为 None。

autopct:设置饼图内各个扇形百分比显示格式,%d%% 整数百分比,%0.1f 一位小数, %0.1f%% 一位小数百分比, %0.2f%% 两位小数百分比。

labeldistance:标签标记的绘制位置,相对于半径的比例,默认值为 1.1,如 <1则绘制在饼图内侧。

pctdistance::类似于 labeldistance,指定 autopct 的位置刻度,默认值为 0.6。

shadow::布尔值 True 或 False,设置饼图的阴影,默认为 False,不设置阴影。

radius::设置饼图的半径,默认为 1。

startangle::用于指定饼图的起始角度,默认为从 x 轴正方向逆时针画起,如设定 =90 则从 y 轴正方向画起。

counterclock:布尔值,用于指定是否逆时针绘制扇形,默认为 True,即逆时针绘制,False 为顺时针。

wedgeprops :字典类型,默认值 None。用于指定扇形的属性,比如边框线颜色、边框线宽度等。例如:wedgeprops={'linewidth':5} 设置 wedge 线宽为5。
textprops :字典类型,用于指定文本标签的属性,比如字体大小、字体颜色等,默认值为 None。
center :浮点类型的列表,用于指定饼图的中心位置,默认值:(0,0)。
frame :布尔类型,用于指定是否绘制饼图的边框,默认值:False。如果是 True,绘制带有表的轴框架。
rotatelabels :布尔类型,用于指定是否旋转文本标签,默认为 False。如果为 True,旋转每个 label 到指定的角度。
data:用于指定数据。如果设置了 data 参数,则可以直接使用数据框中的列作为 x、labels 等参数的值,无需再次传递。

除此之外,pie() 函数还可以返回三个参数:

wedges:一个包含扇形对象的列表。

texts:一个包含文本标签对象的列表。

autotexts:一个包含自动生成的文本标签对象的列表。

目录
相关文章
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 10
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。Seaborn 支持多种图表类型,如散点图、折线图、柱状图、热图等,并特别强调视觉效果。例如,使用 `sns.violinplot()` 可以轻松绘制展示数据分布的小提琴图。
34 1
|
26天前
|
机器学习/深度学习 计算机视觉 Python
Matplotlib 教程
Matplotlib 教程
19 1
|
2月前
|
数据可视化 数据挖掘 Python
Matplotlib 教程 之 Seaborn 教程 8
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了简洁的高级接口和美观的默认样式,支持多种图表类型,如散点图、折线图、柱状图、热图等,特别适合于数据分析和展示。例如,使用 `sns.boxplot()` 可以轻松绘制箱线图,展示数据的分布情况。
40 3
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 9
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。本文介绍了 Seaborn 的主要功能和绘图函数,包括热图 `sns.heatmap()` 的使用方法和示例代码。
24 1
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 2
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制,提供高级接口和美观的默认主题,支持散点图、折线图等多种图表类型,安装简便,可通过 `pip install seaborn` 完成。Seaborn 设计注重美观与易用性,内置多种主题如 darkgrid、whitegrid 等,便于用户快速生成高质量的统计图表。
24 3
|
2月前
|
Python
Matplotlib 教程 之 Matplotlib imread() 方法 4
Matplotlib 的 `imread()` 方法用于从文件中读取图像数据,返回一个包含图像信息的 numpy 数组。该方法支持灰度和彩色图像,可通过调整数组元素来修改图像颜色。示例中展示了如何将图像中的绿色和蓝色通道置零,从而显示红色图像。
20 1
|
2月前
|
Python
Matplotlib 教程 之 Matplotlib imsave() 方法 2
Matplotlib 教程 之 Matplotlib imsave() 方法 2
31 1
|
2月前
|
机器学习/深度学习 定位技术 Python
Matplotlib 教程 之 Matplotlib imshow() 方法 6
Matplotlib `imshow()` 方法教程:详解如何使用 `imshow()` 函数显示二维图像,包括灰度图、彩色图及不同插值方法的应用示例。通过调整参数如颜色映射(cmap)、插值方法(interpolation)等,实现图像的不同视觉效果。
43 2
|
2月前
|
定位技术 Python
Matplotlib 教程 之 Matplotlib imshow() 方法 1
《Matplotlib imshow() 方法教程》:本文介绍 Matplotlib 库中的 imshow() 函数,该函数常用于绘制二维灰度或彩色图像,也可用于展示矩阵、热力图等。文中详细解释了其语法及参数,例如颜色映射(cmap)、归一化(norm)等,并通过实例演示了如何使用 imshow() 显示灰度图像。
39 2
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 直方图 2
使用 Matplotlib 的 `hist()` 方法绘制直方图,通过实例展示了如何比较多组数据的分布。`hist()` 方法属于 Matplotlib 的 pyplot 子库,能有效展示数据分布特性,如中心趋势和偏态。示例中通过生成三组正态分布的随机数据并设置参数(如 bins、alpha 和 label),实现了可视化比较。
39 3