Python复杂网络结构可视化——matplotlib+networkx

简介: Python复杂网络结构可视化——matplotlib+networkx

什么是networkx?

networkx在02年5月产生,是用python语言编写的软件包,便于用户对复杂网络进行创建、操作和学习。利用networkx可以以标准化和非标准化的数据格式存储网络、生成多种随机网络和经典网络、分析网络结构、建立网络模型、设计新的网络算法、进行网络绘制等。 ——百度百科

我们可以用networkx做什么?

https://networkx.github.io/documentation/stable/auto_examples/index.html

1.画图

image

2.有向图,无向图,网络图……

image

3.总之各种图

image

image

看到这你是不是心动了呢?今天的教程就是要教会你画出封面上的三层感知机模型图!

Let's get started!

首先导入networkx和matplotlib模块
import networkx as nx
import matplotlib.pyplot as plt 
>>> import networkx as nx
>>> G = nx.Graph() 定义了一个空图
>>> G.add_node(1) 这个图中增加了1节点
>>> G.add_node('A') 增加'A'节点
>>> G.add_nodes_from([2, 3]) 同时加2和3两个节点
>>> G.add_edges_from([(1,2),(1,3),(2,4),(2,5),(3,6),(4,8),(5,8),(3,7)]) 
# 增加这么多条边,在下面有举例
>>> H = nx.path_graph(10) 
>>> G.add_nodes_from(H)
>>> G.add_node(H)
G.add_node('a')#添加点a
G.add_node(1,1)#用坐标来添加点
G.add_edge('x','y')#添加边,起点为x,终点为y
G.add_weight_edges_from([('x','y',1.0)])#第三个输入量为权值
#也可以
list = [[('a','b',5.0),('b','c',3.0),('a','c',1.0)]
G.add_weight_edges_from([(list)])

我们来看看上面最后一句是什么意思

import matplotlib.pyplot as plt
import networkx as nx
H = nx.path_graph(10) 
G.add_nodes_from(H)
nx.draw(G, with_labels=True)
plt.show()

image

生成了标号为0到9的十个点!别急,丑是丑了点,一会我们再给他化妆。

再举个栗子

G=nx.Graph()
#导入所有边,每条边分别用tuple表示
G.add_edges_from([(1,2),(1,3),(2,4),(2,5),(3,6),(4,8),(5,8),(3,7)]) 
nx.draw(G, with_labels=True, edge_color='b', node_color='g', node_size=1000)
plt.show()
#plt.savefig('./generated_image.png') 如果你想保存图片,去除这句的注释

image

好了,你现在已经知道如何给图添加边和节点了,接下来是构造环:

画个圈圈

import matplotlib.pyplot as plt
import networkx as nx
# H = nx.path_graph(10) 
# G.add_nodes_from(H)
G = nx.Graph()
G.add_cycle([0,1,2,3,4])
nx.draw(G, with_labels=True)
plt.show()

image

画个五角星

import networkx as nx
import matplotlib.pyplot as plt 
#画图!
G=nx.Graph()
G.add_node(1)
G.add_nodes_from([2,3,4,5])
for i in range(5):
    for j in range(i):
        if (abs(i-j) not in (1,4)):    
            G.add_edge(i+1, j+1)
nx.draw(G, 
        with_labels=True, #这个选项让节点有名称
        edge_color='b', # b stands for blue! 
        pos=nx.circular_layout(G), # 这个是选项选择点的排列方式,具体可以用 help(nx.drawing.layout) 查看
     # 主要有spring_layout  (default), random_layout, circle_layout, shell_layout   
     # 这里是环形排布,还有随机排列等其他方式  
        node_color='r', # r = red
        node_size=1000, # 节点大小
        width=3, # 边的宽度
       )
plt.show()

image

import random
G = nx.gnp_random_graph(10,0.3)
for u,v,d in G.edges(data=True):
    d['weight'] = random.random()

edges,weights = zip(*nx.get_edge_attributes(G,'weight').items())

pos = nx.spring_layout(G)
nx.draw(G, pos, node_color='b', edgelist=edges, edge_color=weights, width=10.0, edge_cmap=plt.cm.Blues)
# plt.savefig('edges.png')
plt.show()

image

加入权重

import matplotlib.pyplot as plt
import networkx as nx

G = nx.Graph()

G.add_edge('a', 'b', weight=0.6)
G.add_edge('a', 'c', weight=0.2)
G.add_edge('c', 'd', weight=0.1)
G.add_edge('c', 'e', weight=0.7)
G.add_edge('c', 'f', weight=0.9)
G.add_edge('a', 'd', weight=0.3)

elarge = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] > 0.5]
esmall = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] <= 0.5]

pos = nx.spring_layout(G)  # positions for all nodes

# nodes
nx.draw_networkx_nodes(G, pos, node_size=700)

# edges
nx.draw_networkx_edges(G, pos, edgelist=elarge,
                       width=6)
nx.draw_networkx_edges(G, pos, edgelist=esmall,
                       width=6, alpha=0.5, edge_color='b', style='dashed')

# labels
nx.draw_networkx_labels(G, pos, font_size=20, font_family='sans-serif')

plt.axis('off')
plt.show()

image

有向图

from __future__ import division
import matplotlib.pyplot as plt
import networkx as nx

G = nx.generators.directed.random_k_out_graph(10, 3, 0.5)
pos = nx.layout.spring_layout(G)

node_sizes = [3 + 10 * i for i in range(len(G))]
M = G.number_of_edges()
edge_colors = range(2, M + 2)
edge_alphas = [(5 + i) / (M + 4) for i in range(M)]

nodes = nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='blue')
edges = nx.draw_networkx_edges(G, pos, node_size=node_sizes, arrowstyle='->',
                               arrowsize=10, edge_color=edge_colors,
                               edge_cmap=plt.cm.Blues, width=2)
# set alpha value for each edge
for i in range(M):
    edges[i].set_alpha(edge_alphas[i])

ax = plt.gca()
ax.set_axis_off()
plt.show()

image

颜色渐变的节点

import matplotlib.pyplot as plt
import networkx as nx

G = nx.cycle_graph(24)
pos = nx.spring_layout(G, iterations=200)
nx.draw(G, pos, node_color=range(24), node_size=800, cmap=plt.cm.Blues)
plt.show()

image

颜色渐变的边

import matplotlib.pyplot as plt
import networkx as nx

G = nx.star_graph(20)
pos = nx.spring_layout(G)
colors = range(20)
nx.draw(G, pos, node_color='#A0CBE2', edge_color=colors,
        width=4, edge_cmap=plt.cm.Blues, with_labels=False)
plt.show()

image

如何画一个多层感知机?

import matplotlib.pyplot as plt
import networkx as nx 
left, right, bottom, top, layer_sizes = .1, .9, .1, .9, [4, 7, 7, 2]
# 网络离上下左右的距离
# layter_sizes可以自己调整
import random
G = nx.Graph()
v_spacing = (top - bottom)/float(max(layer_sizes))
h_spacing = (right - left)/float(len(layer_sizes) - 1)
node_count = 0
for i, v in enumerate(layer_sizes):
    layer_top = v_spacing*(v-1)/2. + (top + bottom)/2.
    for j in range(v):
        G.add_node(node_count, pos=(left + i*h_spacing, layer_top - j*v_spacing))
        node_count += 1
# 这上面的数字调整我想了好半天,汗
for x, (left_nodes, right_nodes) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
    for i in range(left_nodes):
        for j in range(right_nodes):
            G.add_edge(i+sum(layer_sizes[:x]), j+sum(layer_sizes[:x+1]))    
# 慢慢研究吧
pos=nx.get_node_attributes(G,'pos')
# 把每个节点中的位置pos信息导出来
nx.draw(G, pos, 
        node_color=range(node_count), 
        with_labels=True,
        node_size=200, 
        edge_color=[random.random() for i in range(len(G.edges))], 
        width=3, 
        cmap=plt.cm.Dark2, # matplotlib的调色板,可以搜搜,很多颜色呢
        edge_cmap=plt.cm.Blues
       )
plt.show()

image

差不多就是这个效果了。

后续我会封装为一个类,加入动态演示,比如通过颜色深浅,显示神经网络在优化的时候权重变化。应该会很好玩,嘿嘿。

上面你也可以改变layer_sizes

比如改为233333

image

调皮了

image

layter_sizes = [2, 3, 4, 5, 5, 4, 3, ] 贼丑了

完。

原文发布时间为:2018-08-06
本文作者:DeepWeaver
本文来自云栖社区合作伙伴“ Python爱好者社区”,了解相关信息可以关注“ Python爱好者社区

相关文章
|
7天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
8天前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
24 2
|
15天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
59 6
|
4天前
|
算法 定位技术 Python
震惊!Python 图结构竟然可以这样玩?DFS&BFS 遍历技巧大公开
在 Python 编程中,图是一种重要的数据结构,而深度优先搜索(DFS)和广度优先搜索(BFS)是遍历图的两种关键算法。本文将通过定义图的数据结构、实现 DFS 和 BFS 算法,并通过具体示例展示其应用,帮助读者深入理解这两种算法。DFS 适用于寻找路径和检查图连通性,而 BFS 适用于寻找最短路径。掌握这些技巧,可以更高效地解决与图相关的复杂问题。
14 2
|
5天前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
8天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
27 3
|
10天前
|
Python
SciPy 教程 之 SciPy 图结构 7
《SciPy 教程 之 SciPy 图结构 7》介绍了 SciPy 中处理图结构的方法。图是由节点和边组成的集合,用于表示对象及其之间的关系。scipy.sparse.csgraph 模块提供了多种图处理功能,如 `breadth_first_order()` 方法可按广度优先顺序遍历图。示例代码展示了如何使用该方法从给定的邻接矩阵中获取广度优先遍历的顺序。
21 2
|
11天前
|
算法 Python
SciPy 教程 之 SciPy 图结构 5
SciPy 图结构教程,介绍图的基本概念和SciPy中处理图结构的模块scipy.sparse.csgraph。重点讲解贝尔曼-福特算法,用于求解任意两点间最短路径,支持有向图和负权边。通过示例演示如何使用bellman_ford()方法计算最短路径。
23 3
|
13天前
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
39 5