LangChain-10 Agents langchainhub 共享的提示词Prompt

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: LangChain-10 Agents langchainhub 共享的提示词Prompt

LangChainHub 的思路真的很好,通过Hub的方式将Prompt 共享起来,大家可以通过很方便的手段,短短的几行代码就可以使用共享的Prompt。

我个人非常看好这个项目。

官方推荐使用LangChainHub,但是它在GitHub已经一年没有更新了, 倒是数据还在更新。


安装依赖

pip install langchainhub

Prompt

为了防止大家不能访问,我这里先把用到的模板复制一份出来。

HUMAN

You are a helpful assistant. Help the user answer any questions.



You have access to the following tools:



{tools}



In order to use a tool, you can use <tool></tool> and <tool_input></tool_input> tags. You will then get back a response in the form <observation></observation>

For example, if you have a tool called 'search' that could run a google search, in order to search for the weather in SF you would respond:



<tool>search</tool><tool_input>weather in SF</tool_input>

<observation>64 degrees</observation>



When you are done, respond with a final answer between <final_answer></final_answer>. For example:



<final_answer>The weather in SF is 64 degrees</final_answer>



Begin!



Previous Conversation:

{chat_history}



Question: {input}

{agent_scratchpad}

编写代码

代码主要部分是,定义了一个工具tool,让Agent执行,模拟了一个搜索引擎,让GPT利用工具对自身的内容进行扩展,从而完成复杂的任务。

from langchain import hub
from langchain.agents import AgentExecutor, tool
from langchain.agents.output_parsers import XMLAgentOutputParser
from langchain_openai import ChatOpenAI

model = ChatOpenAI(
    model="gpt-3.5-turbo",
)


@tool
def search(query: str) -> str:
    """Search things about current events."""
    return "32 degrees"


tool_list = [search]
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/xml-agent-convo")


# Logic for going from intermediate steps to a string to pass into model
# This is pretty tied to the prompt
def convert_intermediate_steps(intermediate_steps):
    log = ""
    for action, observation in intermediate_steps:
        log += (
            f"<tool>{action.tool}</tool><tool_input>{action.tool_input}"
            f"</tool_input><observation>{observation}</observation>"
        )
    return log


# Logic for converting tools to string to go in prompt
def convert_tools(tools):
    return "\n".join([f"{tool.name}: {tool.description}" for tool in tools])


agent = (
    {
        "input": lambda x: x["input"],
        "agent_scratchpad": lambda x: convert_intermediate_steps(
            x["intermediate_steps"]
        ),
    }
    | prompt.partial(tools=convert_tools(tool_list))
    | model.bind(stop=["</tool_input>", "</final_answer>"])
    | XMLAgentOutputParser()
)

agent_executor = AgentExecutor(agent=agent, tools=tool_list)
message = agent_executor.invoke({"input": "whats the weather in New york?"})
print(f"message: {message}")

运行结果

➜ python3 test10.py
message: {'input': 'whats the weather in New york?', 'output': 'The weather in New

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
11月前
|
人工智能 自然语言处理 测试技术
软件测试/人工智能|LangChain核心模块Agents详解
软件测试/人工智能|LangChain核心模块Agents详解
|
1月前
LangChain-15 Manage Prompt Size 管理上下文大小,用Agent的方式询问问题,并去百科检索内容,总结后返回
LangChain-15 Manage Prompt Size 管理上下文大小,用Agent的方式询问问题,并去百科检索内容,总结后返回
36 2
|
1月前
LangChain-24 Agengts 通过TavilySearch Agent实现检索内容并回答 AgentExecutor转换Search 借助Prompt Tools工具
LangChain-24 Agengts 通过TavilySearch Agent实现检索内容并回答 AgentExecutor转换Search 借助Prompt Tools工具
30 0
|
4月前
|
自然语言处理 API 开发工具
初识langchain:LLM大模型+Langchain实战[qwen2.1、GLM-4]+Prompt工程
【7月更文挑战第6天】初识langchain:LLM大模型+Langchain实战[qwen2.1、GLM-4]+Prompt工程
初识langchain:LLM大模型+Langchain实战[qwen2.1、GLM-4]+Prompt工程
|
3月前
|
存储 索引
LangChain 构建问题之Prompt Templates(提示模板)的定义如何解决
LangChain 构建问题之Prompt Templates(提示模板)的定义如何解决
26 1
|
3月前
|
JSON Go 数据格式
langchain 入门指南 - 让 LLM 自动选择不同的 Prompt
langchain 入门指南 - 让 LLM 自动选择不同的 Prompt
93 0
|
3月前
|
机器学习/深度学习 存储 测试技术
langchain 入门指南 - 如何做好 Prompt
langchain 入门指南 - 如何做好 Prompt
45 0
|
6月前
|
人工智能 开发者
基于LangChain的Prompt模板
LangChain是一个开源库,简化了基于LLM的AI应用开发,充当AI开发的万能适配器,抽象并整合了大语言模型(如OpenAI和文心)的交互。要使用LangChain,首先通过`pip install langchain`安装。示例展示了如何使用LangChain与OpenAI模型交互,包括直接调用OpenAI接口和使用LangChain接口。LangChain的提示词模板功能用于构建Prompt,提高与AI对话的效率。LangChainHub是一个资源库,提供模板、工作流和最佳实践,方便开发者发现和分享。本文介绍了LangChain的基本用法和其生态系统中的LangChainHub。
基于LangChain的Prompt模板
|
6月前
|
人工智能
LangChain:1. Prompt基本使用
LangChain:1. Prompt基本使用
176 1
|
6月前
|
人工智能
【AI大模型应用开发】【LangChain系列】实战案例5:用LangChain实现灵活的Agents+RAG,该查时查,不该查时就别查
【AI大模型应用开发】【LangChain系列】实战案例5:用LangChain实现灵活的Agents+RAG,该查时查,不该查时就别查
372 0