Python数据分析7

简介: PyTorch是由Facebook(现Meta)人工智能研究院于2017年开源的Python机器学习库,基于Torch构建,支持GPU加速和动态神经网络,适用于自然语言处理等领域。其灵活的API和简洁的语法使得构建和调试深度学习模型变得简单快捷,成为深度学习领域的热门工具之一。社区支持广泛,拥有丰富的应用领域库。

3.PyTorch
2017年1月,Facebook人工智能研究院(现为Meta人工智能研究院)在GitHub上开源了PyTorch。PyTorch是一个基于PyTorch是一个基于Torch的Python开源机器学习库,也是一个深度学习框架,可用于自然语言处理等应用程序。PyTorch不仅能够实现强大的GPU加速,还支持动态神经网络,这一点是现在很多主流框架(如TensorFlow)都不支持的。
PyTorch可以帮助构建深度学习项目,强调灵活性,允许用Python表达深度学习模型。PyTorch提供命令式体验,直接使用nn.module封装便可使搭建更快速和方便。另外,调试PyTorch就像调试Python代码一样简单。
由于PyTorch的易适用性,它在社区中得到较早的应用,并且在发布几年后即成长为优秀的学习深度学习工具之一。PyTorch清晰的语法、简化的API和易于调试的功能,使其成为深度学习的最佳选择之一。除此之外,PyTorch中还存在较为完备的与应用领域对应的PyTorch库,如表2-5所示。
{91C4E90F-D947-449B-883E-0C4F65025FD1}.png

目录
相关文章
|
27天前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
51 2
|
27天前
|
机器学习/深度学习 数据可视化 算法
使用Python进行数据分析:从零开始的指南
【10月更文挑战第9天】使用Python进行数据分析:从零开始的指南
35 1
|
9天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
30 0
|
3天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
11 2
|
10天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
21 1
|
15天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
21 2
|
1天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
1天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
3天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
27天前
|
数据采集 数据可视化 数据挖掘
使用Python进行高效的数据分析
【10月更文挑战第9天】使用Python进行高效的数据分析
21 1
下一篇
无影云桌面