Python大麦网演唱会数据爬取

简介: Python大麦网演唱会数据爬取

本期,笔者通过Python实现对大麦网近期全国演唱会数据进行爬取,通过分析,我们发现大麦网属于Python爬虫策略中“中等型”难度网站,演唱会数据封装在json文件中。因此,我们简单的通过requests、json就可以将数据爬取出来,后期通过pandas进行数据筛选并保存至Excel文件中。1.目标网站分析

检查一下看xhr中有没有我们需要的数据。

很好,就在xhr中用json封装了数据。2.构造相应的Request URL

request url中只有一个参数变化,那就是“Page=”这个选项变了,简单了😄,一共6页,直接循环构造了。


for i in range(1,7):    url=f'https://search.damai.cn/searchajax.html?keyword=&cty=&ctl=%E6%BC%94%E5%94%B1%E4%BC%9A&sctl=&tsg=0&st=&et=&order=1&pageSize=30&currPage={i}&tn='#     print(url)

3.requests爬虫走起

直接上代码:


def crawl(url):       headers={        'cookie': 'cna=J7K2Fok5AXECARu7QWn6+cxu; isg=BCcnDiP-NfKV5bF-OctWuXuatl3xrPuOyBVJJfmQLrZn6ESqAX0y3jrhCuj2ANMG; l=eBSmWoPRQeT6Zn3iBO5whurza77O1CAf1sPzaNbMiIncC6BR1AvOCJxQLtyCvptRR8XcGLLB4nU7C5eTae7_7CDmndLHuI50MbkyCef..',        'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'    }    response=requests.get(url,headers=headers)    json_text=json.loads(response.text)    # print(json_text.keys())    rdata=json_text['pageData']['resultData']#     print(rdata)    return(rdata)

   加一个headers,简单做一个防反爬。4.保存至excel文件基本思路是将每页数据保存成pandas的DataFrame结构,然后进行拼接,拼接完后再保存到Excel文件中。


inidata=pd.DataFrame(columns=('name','actors','cityname','showtime','price_str','venue','venuecity','verticalPic'))for i in range(1,7):    url=f'https://search.damai.cn/searchajax.html?keyword=&cty=&ctl=%E6%BC%94%E5%94%B1%E4%BC%9A&sctl=&tsg=0&st=&et=&order=1&pageSize=30&currPage={i}&tn='#     print(url)#     print(crawl(url))    data=pd.DataFrame(crawl(url))    data1=data[['name','actors','cityname','showtime','price_str','venue','venuecity','verticalPic']]    inidata=inidata.append(data1)# print(inidata)inidata.to_excel('大麦网演唱会.xlsx',index=0)

5.看看效果


完美收工!好了,大麦网的演唱会数据就保存到电脑上了,具体代码我上传至github上,链接如下:

https://github.com/gudanhero2018/Python/blob/master/parse_damai.py

相关文章
|
25天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能数据隐私保护
使用Python实现深度学习模型:智能数据隐私保护 【10月更文挑战第3天】
171 0
|
2天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
23天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
1月前
|
传感器 物联网 开发者
使用Python读取串行设备的温度数据
本文介绍了如何使用Python通过串行接口(如UART、RS-232或RS-485)读取温度传感器的数据。详细步骤包括硬件连接、安装`pyserial`库、配置串行端口、发送请求及解析响应等。适合嵌入式系统和物联网应用开发者参考。
55 3
|
2月前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
1月前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
32 1
|
2月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
118 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
2月前
|
计算机视觉 Python
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。
54 3
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
|
1月前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。