AI计算机视觉笔记十四:YOLOV5环境搭建及测试全过程

简介: 本文详细记录了在Windows 10环境下从零开始搭建yolov5环境并进行测试的全过程,涵盖环境配置、依赖安装及模型测试等关键步骤。文章首先介绍了所需环境(Python 3.8、yolov5-5.0),接着详细说明了如何使用Miniconda3创建与激活虚拟环境,并通过具体命令演示了如何下载安装yolov5及相关依赖库。最后,通过一系列命令展示了如何下载预训练模型并对示例图像进行目标检测,同时解决了一些常见错误。适合初学者跟随实践。如需转载,请注明原文出处。

若该文为原创文章,转载请注明原文出处。

记录yolov5从环境搭建到测试全过程。

一、运行环境

1、系统:windows10 (无cpu)

2、yolov5版本:yolov5-5.0

3、python版本:py3.8

在创建虚拟环境前需要先把miniconda3和pytorch安装好。

二、虚拟环境搭建

1、打开Anaconda Powershell Prompt(miniconda3)终端,执行下面命令创建python虚拟环境

conda create -n your_env_name python=x.x
conda create -n yolov5_env python=3.8
创建名为yolov5_env,py3.8的虚拟环境,遇到需要输入时,输入y,会安装一些基本的包。
image.png
如果创建过程中出错或长时间等待,自行换轮子(源)

创建成功后会提示激活环境等,如下图。

image.png
按提示,激活环境

conda activate yolov5_env
激活后,环境就修改了
image.png

三、yolov5测试

1、下载5.0版本

Tags · ultralytics/yolov5 · GitHub

image.png
下载后,解压,然后从终端进入目录,比如解压后的文件放在桌面,使用命令cd进入:
image.png

目录下有个README.md已经写得很清楚了,可以参照上面的去操作。

2、安装Requirements
要求python3.8, torch>=1.7,在requirements.txt文件里有指定版本

执行下面命令安装即可,安装如果太慢,就使用国内的源

pip install -r requirements.txt
太慢使用下面指令安装,使用的是清华源

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
第一次安装可能会有点久,需要耐心等待

image.png
3、测试
测试前需要先下载使用的权重文件。

下载地址:

Release v5.0 - YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations · ultralytics/yolov5 · GitHub

image.png
下载yolov5s.pt文件,也可以下载其他的,在yolov5-5.0目录下创建weights,把下载的yolov5s.pt放到weights目录下。

image.png

接下来使用下面命令测试

python detect.py --source data/images/zidane.jpg --weights weights/yolov5s.pt
执行后出错了attributeerror: 'upsample' object has no attribute 'recompute_scale_factor'这个错误,这个错误是PyTorch的版本问题,

降低PyTorch的版本到1.9.0,PyTorch的历史版本Previous PyTorch Versions | PyTorch

pytorch需要根据自己的电脑安装,我使用的是CPU,所以指令最后一条指令

# CUDA 10.2
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=10.2 -c pytorch

# CUDA 11.3
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=11.3 -c pytorch -c conda-forge

# CPU Only
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cpuonly -c pytorch

安装后在次执行,出现“ImportError: DLL load failed while importing _imaging: 找不到指定的模块”的错误

重装pillow:
pip uninstall pillow

pip install pillow

运行成功后,会把结果输出保存到runs/detect/expX中。
image.png
参数

--source:输入源

              0  # webcam
              file.jpg  # image 
             file.mp4  # video
             path/  # directory
             path/*.jpg  # glob
             'https://youtu.be/NUsoVlDFqZg'  # YouTube video
             'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

--weights:权重文件,可以是自己训练的,测试使用的是github提供的

参数还有很多,详细参考github上

如此,测试完成,接下来自己编写一个简单的测试程序,并训练自己的数据集。

相关文章
|
3月前
|
人工智能 自然语言处理 测试技术
用图灵测试检验AI尤其是大语言模型,真的科学吗?
【9月更文挑战第25天】《Does GPT-4 Pass the Turing Test?》一文评估了先进AI模型GPT-4的图灵测试表现。尽管GPT-4在某些对话中成功迷惑了参与者,但其整体成功率仅为41%,低于人类的63%。图灵测试作为评估AI语言能力的工具依然有效,但存在局限性,如无法评估AI的认知机制且受主观判断影响。此外,测试还引发了关于AI智能及伦理的讨论。
183 6
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
智能化软件测试:AI驱动的自动化测试策略与实践####
本文深入探讨了人工智能(AI)在软件测试领域的创新应用,通过分析AI技术如何优化测试流程、提升测试效率及质量,阐述了智能化软件测试的核心价值。文章首先概述了传统软件测试面临的挑战,随后详细介绍了AI驱动的自动化测试工具与框架,包括自然语言处理(NLP)、机器学习(ML)算法在缺陷预测、测试用例生成及自动化回归测试中的应用实例。最后,文章展望了智能化软件测试的未来发展趋势,强调了持续学习与适应能力对于保持测试策略有效性的重要性。 ####
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
自动化测试的新篇章:利用AI提升软件质量
【10月更文挑战第35天】在软件开发的海洋中,自动化测试犹如一艘救生艇,它帮助团队确保产品质量,同时减少人为错误。本文将探索如何通过集成人工智能(AI)技术,使自动化测试更加智能化,从而提升软件测试的效率和准确性。我们将从AI在测试用例生成、测试执行和结果分析中的应用出发,深入讨论AI如何重塑软件测试领域,并配以实际代码示例来说明这些概念。
45 3
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
自动化测试的未来:AI与持续集成的完美结合
【10月更文挑战第39天】本文将探索自动化测试领域的最新趋势,特别是人工智能(AI)如何与持续集成(CI)流程相结合,以实现更快、更智能的测试实践。我们将通过实际代码示例和案例分析,展示这种结合如何提高软件质量和开发效率,同时减少人为错误。
39 0
|
2月前
|
人工智能 自动驾驶 机器人
【通义】AI视界|苹果自动驾驶汽车项目画上句号:加州测试许可被取消
本文精选了24小时内的重要科技新闻,包括Waymo前CEO批评马斯克对自动驾驶的态度、AMD发布新款AI芯片但股价波动、苹果造车项目终止、Familia.AI推出家庭应用以及AI逆向绘画技术的进展。更多内容请访问通义官网体验。
|
2月前
|
机器学习/深度学习 人工智能 安全
自动化测试的未来:AI与机器学习的结合
随着技术的发展,软件测试领域正迎来一场革命。自动化测试,一度被认为是提高效率和准确性的黄金标准,如今正在被人工智能(AI)和机器学习(ML)的浪潮所推动。本文将探讨AI和ML如何改变自动化测试的面貌,提供代码示例,并展望这一趋势如何塑造软件测试的未来。我们将从基础概念出发,逐步深入到实际应用,揭示这一技术融合如何为测试工程师带来新的挑战和机遇。
68 3
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
探索软件测试的未来:AI与自动化的融合
【10月更文挑战第25天】在本文中,我们将深入探讨软件测试领域正在经历的革命性变化。随着人工智能(AI)和自动化技术的不断进步,传统的测试方法正逐步被更高效、更智能的解决方案所取代。文章将展示如何通过AI增强自动化测试框架,实现更高效的缺陷检测和问题解决。我们将从基础出发,逐步揭示AI在测试用例生成、测试执行和结果分析中的应用,以及这些技术如何帮助团队提高生产力并缩短产品上市时间。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
自动化测试的未来:AI与机器学习的融合
【9月更文挑战第29天】在软件测试领域,自动化测试一直是提高测试效率和质量的关键。随着人工智能(AI)和机器学习(ML)技术的飞速发展,它们正逐步渗透到自动化测试中,预示着一场测试革命的来临。本文将探讨AI和ML如何重塑自动化测试的未来,通过具体案例展示这些技术如何优化测试流程,提高测试覆盖率和准确性,以及它们对测试工程师角色的影响。
94 7
|
2月前
|
机器学习/深度学习 人工智能 算法
探索软件测试的未来:AI与自动化的融合
【10月更文挑战第15天】在数字化时代的浪潮中,软件测试作为保障软件质量的重要手段,正经历着前所未有的变革。随着人工智能(AI)技术的快速发展和自动化测试工具的不断完善,传统的测试方法正在被重新塑造。本文将深入探讨AI如何赋能软件测试,提升测试效率和准确性,以及自动化测试的未来趋势。我们将通过实际案例,揭示AI与自动化测试相结合的强大潜力,为读者描绘一幅软件测试领域的未来蓝图。
|
3月前
|
机器学习/深度学习 人工智能 数据挖掘
探索自动化测试的未来:AI与机器学习的融合
【9月更文挑战第29天】在软件测试领域,自动化测试一直是提高效率和准确性的关键。但随着技术的发展,特别是人工智能(AI)和机器学习(ML)的兴起,我们见证了一个新时代的到来——自动化测试的未来正逐渐被重新定义。本文将探讨AI和ML如何改变自动化测试的面貌,从智能测试脚本的生成到测试结果的深度分析,我们将一探究竟这些前沿技术是如何使测试流程更加智能化、高效化,并预测它们将如何塑造软件测试的未来趋势。