AI计算机视觉笔记十四:YOLOV5环境搭建及测试全过程

简介: 本文详细记录了在Windows 10环境下从零开始搭建yolov5环境并进行测试的全过程,涵盖环境配置、依赖安装及模型测试等关键步骤。文章首先介绍了所需环境(Python 3.8、yolov5-5.0),接着详细说明了如何使用Miniconda3创建与激活虚拟环境,并通过具体命令演示了如何下载安装yolov5及相关依赖库。最后,通过一系列命令展示了如何下载预训练模型并对示例图像进行目标检测,同时解决了一些常见错误。适合初学者跟随实践。如需转载,请注明原文出处。

若该文为原创文章,转载请注明原文出处。

记录yolov5从环境搭建到测试全过程。

一、运行环境

1、系统:windows10 (无cpu)

2、yolov5版本:yolov5-5.0

3、python版本:py3.8

在创建虚拟环境前需要先把miniconda3和pytorch安装好。

二、虚拟环境搭建

1、打开Anaconda Powershell Prompt(miniconda3)终端,执行下面命令创建python虚拟环境

conda create -n your_env_name python=x.x
conda create -n yolov5_env python=3.8
创建名为yolov5_env,py3.8的虚拟环境,遇到需要输入时,输入y,会安装一些基本的包。
image.png
如果创建过程中出错或长时间等待,自行换轮子(源)

创建成功后会提示激活环境等,如下图。

image.png
按提示,激活环境

conda activate yolov5_env
激活后,环境就修改了
image.png

三、yolov5测试

1、下载5.0版本

Tags · ultralytics/yolov5 · GitHub

image.png
下载后,解压,然后从终端进入目录,比如解压后的文件放在桌面,使用命令cd进入:
image.png

目录下有个README.md已经写得很清楚了,可以参照上面的去操作。

2、安装Requirements
要求python3.8, torch>=1.7,在requirements.txt文件里有指定版本

执行下面命令安装即可,安装如果太慢,就使用国内的源

pip install -r requirements.txt
太慢使用下面指令安装,使用的是清华源

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
第一次安装可能会有点久,需要耐心等待

image.png
3、测试
测试前需要先下载使用的权重文件。

下载地址:

Release v5.0 - YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations · ultralytics/yolov5 · GitHub

image.png
下载yolov5s.pt文件,也可以下载其他的,在yolov5-5.0目录下创建weights,把下载的yolov5s.pt放到weights目录下。

image.png

接下来使用下面命令测试

python detect.py --source data/images/zidane.jpg --weights weights/yolov5s.pt
执行后出错了attributeerror: 'upsample' object has no attribute 'recompute_scale_factor'这个错误,这个错误是PyTorch的版本问题,

降低PyTorch的版本到1.9.0,PyTorch的历史版本Previous PyTorch Versions | PyTorch

pytorch需要根据自己的电脑安装,我使用的是CPU,所以指令最后一条指令

# CUDA 10.2
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=10.2 -c pytorch

# CUDA 11.3
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=11.3 -c pytorch -c conda-forge

# CPU Only
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cpuonly -c pytorch

安装后在次执行,出现“ImportError: DLL load failed while importing _imaging: 找不到指定的模块”的错误

重装pillow:
pip uninstall pillow

pip install pillow

运行成功后,会把结果输出保存到runs/detect/expX中。
image.png
参数

--source:输入源

              0  # webcam
              file.jpg  # image 
             file.mp4  # video
             path/  # directory
             path/*.jpg  # glob
             'https://youtu.be/NUsoVlDFqZg'  # YouTube video
             'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

--weights:权重文件,可以是自己训练的,测试使用的是github提供的

参数还有很多,详细参考github上

如此,测试完成,接下来自己编写一个简单的测试程序,并训练自己的数据集。

相关文章
|
3月前
|
人工智能 测试技术 项目管理
测试不再碎片化:AI智能体平台「项目资料套件」功能上线!
在实际项目中,需求文档分散、整理费时、测试遗漏等问题常困扰测试工作。霍格沃兹推出AI智能体测试平台全新功能——项目资料套件,可将多个关联文档打包管理,并一键生成测试用例,提升测试完整性与效率。支持套件创建、文档关联、编辑删除及用例生成,适用于复杂项目、版本迭代等场景,助力实现智能化测试协作,让测试更高效、更专业。
|
4月前
|
存储 人工智能 算法
AI测试平台实战:深入解析自动化评分和多模型对比评测
在AI技术迅猛发展的今天,测试工程师面临着如何高效评估大模型性能的全新挑战。本文将深入探讨AI测试平台中自动化评分与多模型对比评测的关键技术与实践方法,为测试工程师提供可落地的解决方案。
|
7月前
|
人工智能 自然语言处理 安全
学不会编程也能写测试?AI让测试更平权
在传统的软件开发体系中,测试常被划分为“技术型测试”(如自动化、性能、安全)和“业务型测试”(如功能验证、用户体验)。前者掌握技术话语权,后者则更多依赖经验和流程规范。然而,随着大语言模型(LLM)等AI技术的迅猛发展,这一固有格局正被悄然打破:
246 10
|
2月前
|
人工智能 自然语言处理 JavaScript
Playwright MCP在UI回归测试中的实战:构建AI自主测试智能体
Playwright MCP结合AI智能体,革新UI回归测试:通过自然语言驱动浏览器操作,降低脚本编写门槛,提升测试效率与覆盖范围。借助快照解析、智能定位与Jira等工具集成,实现从需求描述到自动化执行的闭环,推动测试迈向智能化、民主化新阶段。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
968 8
|
3月前
|
人工智能 数据可视化 测试技术
AI 时代 API 自动化测试实战:Postman 断言的核心技巧与实战应用
AI 时代 API 自动化测试实战:Postman 断言的核心技巧与实战应用
549 11
|
3月前
|
人工智能 边缘计算 搜索推荐
AI产品测试学习路径全解析:从业务场景到代码实践
本文深入解析AI测试的核心技能与学习路径,涵盖业务理解、模型指标计算与性能测试三大阶段,助力掌握分类、推荐系统、计算机视觉等多场景测试方法,提升AI产品质量保障能力。
|
5月前
|
人工智能 JavaScript 前端开发
Playwright自动化测试系列课(5) | ​​调试神器实战:Trace Viewer 录屏分析 + AI 辅助定位修复​
Playwright 的 Trace Viewer 提供录屏级追踪,还原测试全过程,帮助定位偶发故障。结合 AI 实现自动修复,大幅提升调试效率,成为自动化测试利器。
|
7月前
|
人工智能 并行计算 监控
在AMD GPU上部署AI大模型:从ROCm环境搭建到Ollama本地推理实战指南
本文详细介绍了在AMD硬件上构建大型语言模型(LLM)推理环境的全流程。以RX 7900XT为例,通过配置ROCm平台、部署Ollama及Open WebUI,实现高效本地化AI推理。尽管面临技术挑战,但凭借高性价比(如700欧元的RX 7900XT性能接近2200欧元的RTX 5090),AMD方案成为经济实用的选择。测试显示,不同规模模型的推理速度从9到74 tokens/秒不等,满足交互需求。随着ROCm不断完善,AMD生态将推动AI硬件多元化发展,为个人与小型组织提供低成本、低依赖的AI实践路径。
3016 1
在AMD GPU上部署AI大模型:从ROCm环境搭建到Ollama本地推理实战指南
|
8月前
|
人工智能 自然语言处理 JavaScript
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!
Magnitude是一个基于视觉AI代理的开源端到端测试框架,通过自然语言构建测试用例,结合推理代理和视觉代理实现智能化的Web应用测试,支持本地运行和CI/CD集成。
1082 15
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!