ChaosMeta for AI:混沌工程让AI稳定性更上一层楼

本文涉及的产品
应用实时监控服务-可观测链路OpenTelemetry版,每月50GB免费额度
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
可观测监控 Prometheus 版,每月50GB免费额度
简介: 1.混沌工程不仅仅是技术过关的利器,更是AI系统完美运转的“防火墙”。ChaosMeta通过全方位、多层次的故障注入和演练,帮助AI系统在复杂多变的环境中维持高稳定性。2.结合混沌工程的思想,我们不仅可以在开发阶段找到和修复问题,还能在运维阶段持续提升系统的鲁棒性。在这个高速发展的AI年代,ChaosMeta将为AI系统提供稳定性保障,让AI系统走得更远、更稳。3.抽空试试ChaosMeta,也许下一个故障发生时,你会发现,原来一切尽在掌握。

作者:刘凇杉

在今天的AI时代,AI系统的架构愈发复杂,其稳定性、资源利用率以及故障自愈能力也显得尤为重要。如果我们在实际运行中遇到问题再去修复,不仅成本高,还会对用户体验造成影响。混沌工程则是通过主动暴露和解决系统脆弱性,极大提升系统的韧性。而ChaosMeta,作为蚂蚁集团开源的混沌工程平台,正在为AI系统的稳定性提供全方位保障。

什么是混沌工程?

picture.image

混沌工程的核心思想是“通过在真实环境中引入故障,评估和提升系统的稳定性”。在实际应用中,这意味着通过故意制造各种错误和故障,观察系统的表现,从而找出和修复系统的脆弱点。随着AI系统逐渐成为现代技术的支柱,混沌工程的应用范围也在不断扩展。

AI系统为何需要混沌工程?

picture.image

在探讨ChaosMeta如何助力AI系统稳定性之前,我们首先来了解一下AI系统常见的故障类型及危害:

  • 基础设施层:包括GPU硬件故障、网络通信故障、存储异常等。这些问题可能会导致模型训练中断、性能下降。
  • 大模型训练层:资源交付问题、网络问题、代码Bug等。训练任务一旦出现问题,可能需要耗费大量时间和资源重新启动。
  • 推理层:推理过程中的配置问题、大流量压力、中间件异常等。这些故障可能直接影响在线服务的响应速度和准确性。
  • AI Agent层:包括显示问题、服务不可用等。这些问题直接影响用户体验,进而影响产品口碑和用户留存率。

通过混沌工程,我们可以在系统开发和运维阶段主动发现这些隐患,确保系统能在意外情况下平稳运行。

ChaosMeta的核心功能

picture.image

ChaosMeta平台提供了多种故障模拟和实验工具,帮助开发者和运维团队系统地测试和提升AI系统的稳定性。

基础设施层:确保底层架构稳如磐石

  1. GPU异常:ChaosMeta能够模拟各种GPU节点故障,如硬件故障、掉卡、温度和功耗异常等,通过这些测试,平台可以检验在GPU出现问题时的应对策略。
    1. XID事件注入:模仿GPU内部各种错误。
    2. 功耗和温度异常:考察硬件的过热和功耗激增情况下的表现。
  1. 存储异常:如存储IO限速和挂起,通过这些故障演练,提升平台在存储异常情况下的应对能力,确保即使存储系统出现问题,上层应用依旧能平稳运行。
    1. IO燃烧和挂起:模拟存储IO操作的抑制和停止。
  1. 网络:模拟网络丢包情况,验证系统在网络异常(如延迟和包丢失)情况下的容错和自愈能力。
    1. 网络丢包和延迟:检验数据传输的稳定性和鲁棒性。

大模型训练层:保障训练任务顺利进行

  1. 任务管理:模拟任务失败、任务重试等场景,确保训练任务能在异常情况下稳定运行。
    1. 任务暂停和失败注入:考察任务管理在任务中断、重启时的处理策略。
  1. 资源分配:模拟资源不足的情况,确保系统能够合理调度资源,避免训练任务因资源不足而中断。
    1. 大量Pending Pod注入:测试多任务争抢资源情况下的调度策略。
  1. 监控和日志:通过自定义监控和日志注入,提升对训练过程异常的实时监测和处理能力。
    1. 自定义日志和监控注入:确保系统能够通过日志和监控数据及时发现问题。

推理层:确保推理服务高效可靠

  1. 任务管理:在高并发、大流量情况下,模拟任务超时、资源占用过高等情况,考察系统在压力下的表现。
    1. 海量任务注入:测试系统在流量激增时的鲁棒性和性能。
  1. 监控体系:通过特征容量监控注入,考察系统在高压情况下的监控和告警能力。
    1. 实时特征监控:考察推理过程中的性能和稳定性。

AI Agent层:提升用户体验的最后一公里

  1. 输出内容:模拟历史已发生的故障,如输出乱码,通过注入代码篡改故障,检验系统的容错能力,确保终端用户看到的是稳定可用的内容。
    1. 任意代码篡改:模拟意外代码修改对输出的影响。
  1. 输入内容:通过对抗性样本测试,确保模型的合规合法,符合伦理道德标准。
    1. 对抗性样本输入:测试模型在陌生或恶意输入下的表现。
  1. 网络异常:模拟网络请求失败、延迟等情况,直接对客用户,确保在网络波动时,服务依旧保持高可用性。
    1. 网络端口占有和延迟注入:考察系统在网络异常下的表现和容错能力。

结束语

  1. 混沌工程不仅仅是技术过关的利器,更是AI系统完美运转的“防火墙”。ChaosMeta通过全方位、多层次的故障注入和演练,帮助AI系统在复杂多变的环境中维持高稳定性。
  2. 结合混沌工程的思想,我们不仅可以在开发阶段找到和修复问题,还能在运维阶段持续提升系统的鲁棒性。在这个高速发展的AI年代,ChaosMeta将为AI系统提供稳定性保障,让AI系统走得更远、更稳。
  3. 抽空试试ChaosMeta,也许下一个故障发生时,你会发现,原来一切尽在掌握。

Github: https://github.com/traas-stack/chaosmeta

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
27天前
|
机器学习/深度学习 人工智能 JSON
【实战干货】AI大模型工程应用于车联网场景的实战总结
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。
354 34
|
6天前
|
人工智能 运维 监控
云卓越架构:企业稳定性架构体系和AI业务场景探秘
本次分享由阿里云智能集团公共云技术服务部上海零售技术服务高级经理路志华主讲,主题为“云卓越架构:企业稳定性架构体系和AI业务场景探秘”。内容涵盖四个部分:1) 稳定性架构设计,强调高可用、可扩展性、安全性和可维护性;2) 稳定性保障体系和应急体系的建立,确保快速响应和恢复;3) 重大活动时的稳定重宝策略,如大促或新业务上线;4) AI在企业中的应用场景,包括智能编码、知识库问答、创意广告生成等。通过这些内容,帮助企业在云计算环境中构建更加稳定和高效的架构,并探索AI技术带来的创新机会。
|
8天前
|
人工智能
阿里云领跑生成式AI工程领域,两大维度排名Gartner®生成式AI工程Market Quadrant全球第二
阿里云凭借强劲实力入选Gartner 《Innovation Guide for Generative AI Technologies》所有领域的新兴领导者象限。
|
2月前
|
人工智能 弹性计算 网络安全
一键玩转CoAI:AI工程变现新模式
CoAI是一款强大的AI管理软件,支持多种大模型如OpenAI、通义千问等,具备丰富的UI设计、多模型管理、弹性计费等功能,既适合个人使用也支持企业级部署,帮助用户轻松管理和商业化AI能力。
|
4月前
|
人工智能 Java 测试技术
低成本工程实践-AI帮我写代码做需求
本文主要讲述,以“无需训练模型”的方式实现:AI智能分析功能需求、写代码、review代码解决特定业务问题的实践过程
126 12
低成本工程实践-AI帮我写代码做需求
|
3月前
|
数据采集 人工智能 测试技术
还在死磕AI咒语?北大-百川搞了个自动提示工程系统PAS
【10月更文挑战第4天】北京大学和百川智能研究人员开发了一种名为PAS的即插即用自动提示工程(APE)系统,利用高质量数据集训练的大型语言模型(LLMs),在基准测试中取得了显著成果,平均提升了6.09个百分点。PAS仅需9000个数据点即可实现顶尖性能,并能自主生成提示增强数据,提高了灵活性和效率。尽管存在训练数据质量和提示多样性等方面的潜在局限性,PAS仍为解决提示工程挑战提供了有前景的方法,有望提升LLM的可用性和有效性。论文详见:https://arxiv.org/abs/2407.06027。
58 3
|
3月前
|
人工智能 API 数据安全/隐私保护
[大语言模型-工程实践] 手把手教你-基于Ollama搭建本地个人智能AI助理
[大语言模型-工程实践] 手把手教你-基于Ollama搭建本地个人智能AI助理
301 0
|
4月前
|
数据采集 机器学习/深度学习 人工智能
云栖实录 | GenAI 时代 AI Infra 工程技术趋势与平台演进
本文根据2024云栖大会实录整理而成,演讲信息如下: 演讲人:林伟 | 阿里云智能集团研究员、阿里云人工智能平台 PAI 负责人;黄博远|阿里云智能集团资深产品专家、阿里云人工智能平台 PAI 产品负责人 活动:2024 云栖大会 - AI Infra 核心技术专场、人工智能平台 PAI 年度发布专场
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
还不懂如何与AI高效交流?保姆级且全面的chatGPT提示词工程教程来啦!(一)基础篇
这篇文章是一篇保姆级的教程,旨在全面介绍如何与AI进行高效交流,包括ChatGPT的前世今生、应用场景以及提问的基础技巧。
还不懂如何与AI高效交流?保姆级且全面的chatGPT提示词工程教程来啦!(一)基础篇
|
4月前
|
人工智能 JSON 自然语言处理
你的Agent稳定吗?——基于大模型的AI工程实践思考
本文总结了作者在盒马智能客服的落地场景下的一些思考,从工程的角度阐述对Agent应用重要的稳定性因素和一些解法。
183 12