深度学习项目中在yaml文件中定义配置,以及使用的python的PyYAML库包读取解析yaml配置文件

简介: 深度学习项目中在yaml文件中定义配置,以及使用的python的PyYAML库包读取解析yaml配置文件

1 yaml说明介绍

1.1 yaml介绍

1、百度百科对YAML解释

YAML"YAML Ain't a Markup Language"(YAML不是一种标记语言)的递归缩写。在开发的这种语言时,YAML 的意思其实是:"Yet Another Markup Language"仍是一种标记语言),但为了强调这种语言以数据做为中心,而不是以标记语言为重点,而用反向缩略语重命名。

YAML是一种数据序列化格式,优点是:

  • 对于人类可读性更友好
  • 方便与脚本语言进行交互使用

1.2 YAML 相关网址

2 YAML的python包PyYAML的使用

2.1 关于PyYAML的相关网址

PyYAML是关于一个操作yaml文件的python库包,相关网址如下:

2.2 安装PyYAML

1、安装yaml的python库包:PyYAML

pip install PyYAML

2、安装注意:

  • 1)虽然,在使用的时候是import yaml,但是安装的时候并不是直接安装yaml名的库包:pip install yaml这种安装方法是错误的,因为安装的并不是PyYAML库包
  • 2)在导入使用的时候,导入的名称为yaml,python中有很多这种安装包名和导入包名不一致的库包,例如opencv,我猜测可能是有人提前在pypi官网上传了某包名,因此导致被占用!

2.3 PyYAML快速使用

1、config.yaml配置文件中定义的可配值信息:

# train parameters setting
optimization: Adam
learning_rate: 0.001
batch_size: 64
epoch: 200

2、使用PyYAML模块解析config.yaml配置文件,主要步骤如下:

  • 使用open()打开config.yaml配置文件,然后使用read()读取
  • 使用yaml.load(stream, Loader)加载读取的配置文件数据,生成一个y的对象
  • 使用字典的形式访问生成的y对象中的配置信息

具体实现代码如下:

import yaml

yaml_path = "./config.yaml"

def read_yaml(yaml_path):
    # 使用open()函数读取config.yaml文件
    yaml_file = open(yaml_path, "r", encoding="utf-8")
    # 读取文件中的内容
    file_data = yaml_file.read()
    print(f"file_date type: {type(file_data)}\nfile_date value:\n{file_data}")
    yaml_file.close()

    # 加载数据流,返回字典类型数据
    y = yaml.load(file_data, Loader=yaml.FullLoader)
    print(f"y data type: {type(y)}\ny data value: {y}")

    # 下面就可以使用字典访问配置文件中的数据了
    print(f"optimization: {y['optimization']}")
    print(f"learning_rate: {y['learning_rate']}")
    print(f"batch_size: {y['batch_size']}")
    print(f"epoch: {y['epoch']}")

    optimization = y['optimization']
    learning_rate = y['learning_rate']
    batch_size = y['batch_size']
    epoch = y['epoch']

    print(type(optimization))
    print(type(learning_rate))
    return optimization, learning_rate, batch_size, epoch



if __name__ == '__main__':
    read_yaml(yaml_path)

输出结果

file_date type: <class 'str'>
file_date value:
# train parameters setting
optimization: Adam
learning_rate: 0.001
batch_size: 64
epoch: 200

y data type: <class 'dict'>
y data value: {
   'optimization': 'Adam', 'learning_rate': 0.001, 'batch_size': 64, 'epoch': 200}

optimization: Adam
learning_rate: 0.001
batch_size: 64
epoch: 200
<class 'str'>
<class 'float'>
目录
相关文章
|
1月前
|
存储 安全 测试技术
Python面试题精选及解析
本文详解Python面试中的六大道经典问题,涵盖列表与元组区别、深浅拷贝、`__new__`与`__init__`、GIL影响、协程原理及可变与不可变类型,助你提升逻辑思维与问题解决能力,全面备战Python技术面试。
|
1月前
|
数据采集 数据挖掘 测试技术
Go与Python爬虫实战对比:从开发效率到性能瓶颈的深度解析
本文对比了Python与Go在爬虫开发中的特点。Python凭借Scrapy等框架在开发效率和易用性上占优,适合快速开发与中小型项目;而Go凭借高并发和高性能优势,适用于大规模、长期运行的爬虫服务。文章通过代码示例和性能测试,分析了两者在并发能力、错误处理、部署维护等方面的差异,并探讨了未来融合发展的趋势。
124 0
|
28天前
|
数据处理 开发工具 开发者
requirement.txt 管理python包依赖
在 Python 项目中,`requirements.txt` 用于记录依赖库及其版本,便于环境复现。本文介绍了多种生成该文件的方法:基础方法使用 `pip freeze`,进阶方法使用 `pipreqs`,专业方法使用 `poetry` 或 `pipenv`,以及手动维护方式。每种方法适用不同场景,涵盖从简单导出到复杂依赖管理,并提供常见问题的解决方案,帮助开发者高效生成精准的依赖列表,确保项目环境一致性。
269 4
|
29天前
|
安全 JavaScript Java
Python中None与NoneType的真相:从单例对象到类型系统的深度解析
本文通过10个真实场景,深入解析Python中表示“空值”的None与NoneType。从单例模式、函数返回值,到类型注解、性能优化,全面揭示None在语言设计与实际编程中的核心作用,帮助开发者正确高效地处理“无值”状态,写出更健壮、清晰的Python代码。
127 3
|
1月前
|
JavaScript 前端开发 机器人
【Azure Bot Service】在中国区Azure上部署机器人的 Python 版配置
本文介绍了在中国区Azure上使用Python SDK配置Azure Bot Service时遇到的问题及解决方案,涵盖参数设置与适配器配置,适用于希望在Azure中国区部署Python机器人的开发者。
|
1月前
|
数据采集 存储 Web App开发
Python爬虫库性能与选型实战指南:从需求到落地的全链路解析
本文深入解析Python爬虫库的性能与选型策略,涵盖需求分析、技术评估与实战案例,助你构建高效稳定的数据采集系统。
230 0
|
1月前
|
存储 程序员 数据处理
Python列表基础操作全解析:从创建到灵活应用
本文深入浅出地讲解了Python列表的各类操作,从创建、增删改查到遍历与性能优化,内容详实且贴近实战,适合初学者快速掌握这一核心数据结构。
141 0
|
1月前
|
存储 小程序 索引
Python变量与基础数据类型:整型、浮点型和字符串操作全解析
在Python编程中,变量和数据类型是构建程序的基础。本文介绍了三种基本数据类型:整型(int)、浮点型(float)和字符串(str),以及它们在变量中的使用方式和常见操作。通过理解变量的动态特性、数据类型的转换与运算规则,初学者可以更高效地编写清晰、简洁的Python代码,为后续学习打下坚实基础。
250 0
|
1月前
|
并行计算 算法 Java
Python3解释器深度解析与实战教程:从源码到性能优化的全路径探索
Python解释器不止CPython,还包括PyPy、MicroPython、GraalVM等,各具特色,适用于不同场景。本文深入解析Python解释器的工作原理、内存管理机制、GIL限制及其优化策略,并介绍性能调优工具链及未来发展方向,助力开发者提升Python应用性能。
119 0
|
1月前
|
存储 监控 安全
Python剪贴板监控实战:clipboard-monitor库的深度解析与扩展应用
本文介绍了基于Python的剪贴板监控技术,结合clipboard-monitor库实现高效、安全的数据追踪。内容涵盖技术选型、核心功能开发、性能优化及实战应用,适用于安全审计、自动化办公等场景,助力提升数据管理效率与安全性。
88 0

热门文章

最新文章

推荐镜像

更多