5 分钟,教你用 Docker 部署一个 Python 应用!

简介: 5 分钟,教你用 Docker 部署一个 Python 应用!

在使用传统物理机或云服务器上部署项目都会存在一些痛点

比如:项目部署速度慢、资源浪费、迁移难且扩展低

而使用 Docker 部署项目的优势包含:

  • 高效利用系统资源
  • 服务启动更快
  • 环境一致,迁移更加方便

本篇文章将介绍 Docker 部署一个 Python 项目的常规流程

1. Dockerfile 描述文件

Dockerfile 是一个放置在项目根目录下的描述文件,可以利用 Docker 命令基于该文件构建一个镜像

常用的指令包含:

  • FROM
    用于定义基础镜像
  • MAINTAINER
    指定维护者信息,可以省略不写
  • RUN
    和「 安装命令连接在一起,可用于安装工具依赖包
  • ADD
    宿主机的文件,并进行解压
  • COPY
    和 ADD 指令功能一样,但是不会进行解压操作
  • WORKDIR
    用于切换工作目录
  • VOLUME
    配置宿主机与容器的目录映射
  • EXPOSE
    配置容器内项目对外暴露的端口号
  • CMD
    指定容器启动后,运行的命令
    如,可以运行某个命令启动项目

2. 实战一下

使用 Docker 部署应用的常规流程是:

  • 开发项目并本地测试通过
  • 编写 Dockerfile 放置到项目根目录
  • 打包镜像文件
  • 运行镜像容器
  • 测试

为了演示方便,这里以一个简单的 Flask 项目为例进行讲解

2-1  项目开发

from flask import Flask
# 安装依赖
# pip3 install -U flask
app = Flask(__name__)
@app.route('/')
def index():
    return "测试容器部署!"
if __name__ == '__main__':
    app.run(host='0.0.0.0', port=8888)
# 浏览器访问测试
# http://127.0.0.1:8888/

项目开发完成,并在本地测试通过后就可以编写 Dockerfile 文件了

2-2  编写 Dockerfile

在项目根目录下,创建一个 Dockerfile 文件,使用上面的指令编写描述脚本

需要注意的是,这里使用「 EXPOSE 」指令暴露的端口号与入口文件定义的端口号保持一致

# Dockerfile
FROM centos:7.9.2009
RUN yum makecache fast;
RUN yum install python3-devel python3-pip -y
RUN pip3 install -i https://pypi.douban.com/simple flask
COPY main.py /opt
WORKDIR /opt
EXPOSE 8888
CMD ["python3","main.py"]

2-3  构建镜像

# 在当前文件夹下,根据Dockerfile文件构建一个镜像
# 镜像名称:xag/my_flask_web
# --no-cache:不使用旧的缓存进行镜像构建
docker build --no-cache -t "xag/my_flask_web" .

2-4  运行镜像容器

使用 docker run 命令基于镜像运行一个容器

其中

  • -d:代表容器在后台运行,不是基于前台运行
  • --name:用于执行容器的别名
  • -p:用于配置宿主机与容器的端口映射
# -d:后台运行
# 宿主机(9999)映射容器内的8888(上面Dockerfile已经暴露了8888端口)
docker run -d --name flask_web -p 9999:8888 xag/my_flask_web

2-5  测试一下

最后在浏览器中,通过宿主机暴露的端口号 9999 访问项目了

访问地址:http://127.0.0.1:9999/

3. 总结

文章中以一个简单的 Web 项目阐述了利用 Docker 部署项目的常规流程

实际上,Dockerfile 非常的灵活,它还支持 ARG/ENV 设置环境变量,VOlUME 指令挂载目录,ENTRYPOINT 配置启动程序和参数等,这部分内容大家可以根据官网介绍自行进行扩展

目录
相关文章
|
4天前
|
消息中间件 监控 RocketMQ
Docker部署RocketMQ5.2.0集群
本文详细介绍了如何使用Docker和Docker Compose部署RocketMQ 5.2.0集群。通过创建配置文件、启动集群和验证容器状态,您可以快速搭建起一个RocketMQ集群环境。希望本文能够帮助您更好地理解和应用RocketMQ,提高消息中间件的部署和管理效率。
145 91
|
5天前
|
存储 NoSQL Redis
Docker 部署 Redis
在使用 Docker 部署 Redis 时,为实现数据持久化,需正确挂载容器内的数据目录到宿主机。推荐命令如下: ``` docker run -d --name redis -v /mnt/data/redis:/data -p 6379:6379 redis ``` 该命令将宿主机的 `/mnt/data/redis` 目录挂载到容器的 `/data` 目录,确保 Redis 数据持久化。此路径更通用,适合大多数场景。避免使用不匹配的挂载路径,如 `/var/lib/redis` 或 `/mnt/data/redis` 到非默认目录,以防止数据无法正确持久化。
|
20天前
|
存储 关系型数据库 MySQL
美团面试:MySQL为什么 不用 Docker部署?
45岁老架构师尼恩在读者交流群中分享了关于“MySQL为什么不推荐使用Docker部署”的深入分析。通过系统化的梳理,尼恩帮助读者理解为何大型MySQL数据库通常不使用Docker部署,主要涉及性能、管理复杂度和稳定性等方面的考量。文章详细解释了有状态容器的特点、Docker的资源隔离问题以及磁盘IO性能损耗,并提供了小型MySQL使用Docker的最佳实践。此外,尼恩还介绍了Share Nothing架构的优势及其应用场景,强调了配置管理和数据持久化的挑战。最后,尼恩建议读者参考《尼恩Java面试宝典PDF》以提升技术能力,更好地应对面试中的难题。
|
12天前
|
JavaScript 前端开发 Docker
如何通过pm2以cluster模式多进程部署next.js(包括docker下的部署)
通过这些步骤,可以确保您的Next.js应用在多核服务器上高效运行,并且在Docker环境中实现高效的容器化管理。
71 44
|
14天前
|
运维 应用服务中间件 nginx
docker运维查看指定应用log文件位置和名称
通过本文的方法,您可以更高效地管理和查看Docker容器中的日志文件,确保应用运行状态可控和可监测。
85 28
|
21天前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
126 9
|
1月前
|
监控 Java 应用服务中间件
tomcat相关概念与部署tomcat多实例-zabbix监控(docker部署)
通过上述步骤,您可以在Ubuntu系统上成功编译并安装OpenCV 4.8。这种方法不仅使您能够定制OpenCV的功能,还可以优化性能以满足特定需求。确保按照每一步进行操作,以避免常见的编译问题。
58 23
|
24天前
|
SQL Java Maven
docker部署apollo
docker部署apollo步骤
|
27天前
|
存储 SQL 大数据
Python 在企业级应用中的两大硬伤
关系数据库和SQL在企业级应用中面临诸多挑战,如复杂SQL难以移植、数据库负担重、应用间强耦合等。Python虽是替代选择,但在大数据运算和版本管理方面存在不足。SPL(esProc Structured Programming Language)作为开源语言,专门针对结构化数据计算,解决了Python的这些硬伤。它提供高效的大数据运算能力、并行处理、高性能文件存储格式(如btx、ctx),以及一致的版本管理,确保企业级应用的稳定性和高性能。此外,SPL与Java无缝集成,适合现代J2EE体系应用,简化开发并提升性能。
|
8月前
|
数据采集 数据可视化 大数据
Python在大数据处理中的应用实践
Python在大数据处理中扮演重要角色,借助`requests`和`BeautifulSoup`抓取数据,`pandas`进行清洗预处理,面对大规模数据时,`Dask`提供分布式处理能力,而`matplotlib`和`seaborn`则助力数据可视化。通过这些工具,数据工程师和科学家能高效地管理、分析和展示海量数据。
405 4

热门文章

最新文章