评估数据集CGoDial问题之TKK框架在知识获取阶段进行训练的问题如何解决

简介: 评估数据集CGoDial问题之TKK框架在知识获取阶段进行训练的问题如何解决

问题一:除了模型预训练,还有哪些方法可以增强Text-to-SQL模型的鲁棒性?

除了模型预训练,还有哪些方法可以增强Text-to-SQL模型的鲁棒性?


参考回答:

除了模型预训练,我们提出一种让模型学习从简单到复杂的范式,称为TKK框架,来增强Text-to-SQL模型的鲁棒性。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655748


问题二:TKK框架主要包含哪几个阶段?

TKK框架主要包含哪几个阶段?


参考回答:

TKK框架主要包含三个阶段:任务拆解(Task decomposition)、知识获取(Knowledge acquisition)和知识组合(Knowledge composition)。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655749


问题三:在任务拆解阶段,TKK框架是如何工作的?

在任务拆解阶段,TKK框架是如何工作的?


参考回答:

在任务拆解阶段,TKK框架将原始Text-to-SQL任务分解为多个子任务,每个子任务对应于将自然语言问题映射到SQL查询的一个或多个子句,如SELECT、FROM、WHERE等子任务。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655750


问题四:TKK框架在知识获取阶段是如何进行训练的?

TKK框架在知识获取阶段是如何进行训练的?


参考回答:

在知识获取阶段,TKK框架采用基于提示词的学习策略,分别获取各个子任务的知识,并以多任务学习方式训练包含所有子任务的模型。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655751


问题五:TKK框架在知识组合阶段的主要目标是什么?

TKK框架在知识组合阶段的主要目标是什么?


参考回答:

在知识组合阶段,TKK框架的主要目标是在主任务(即生成整个SQL查询)上进行微调,以组合之前获得的子任务知识并学习它们之间的依赖关系。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655752

相关文章
|
7月前
|
机器学习/深度学习 搜索推荐 算法
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
447 0
|
数据采集 机器学习/深度学习 编解码
MMdetection框架速成系列 第02部分:整体算法流程+模型搭建流程+detection训练与测试核心组件+训练部分与测试部分的核心算法
众所周知,目标检测算法比较复杂,细节比较多,难以复现,而我们推出的 MMDetection 开源框架则希望解决上述问题。目前 MMdetection 已经复现了大部分主流和前沿模型,例如 Faster R-CNN 系列、Mask R-CNN 系列、YOLO 系列和比较新的 DETR 等等,模型库非常丰富,star 接近 13k,在学术研究和工业落地中应用非常广泛。
1636 0
|
3月前
|
机器学习/深度学习 Python
验证集的划分方法:确保机器学习模型泛化能力的关键
本文详细介绍了机器学习中验证集的作用及其划分方法。验证集主要用于评估模型性能和调整超参数,不同于仅用于最终评估的测试集。文中描述了几种常见的划分方法,包括简单划分、交叉验证、时间序列数据划分及分层抽样划分,并提供了Python示例代码。此外,还强调了在划分数据集时应注意随机性、数据分布和多次实验的重要性。合理划分验证集有助于更准确地评估模型性能并进行有效调优。
|
4月前
|
SQL 自然语言处理
评估数据集CGoDial问题之TKK框架提升模型泛化能力的问题如何解决
评估数据集CGoDial问题之TKK框架提升模型泛化能力的问题如何解决
|
4月前
评估数据集CGoDial问题之构建一个新的OpenIE评测范式的问题如何解决
评估数据集CGoDial问题之构建一个新的OpenIE评测范式的问题如何解决
|
7月前
|
缓存 人工智能 数据可视化
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
|
机器学习/深度学习 人工智能 数据可视化
【网安AIGC专题10.19】论文4:大模型(CODEX 、CodeGen 、INCODER )+自动生成代码评估:改进自动化测试方法、创建测试输入生成器、探索新的评估数据集扩充方法
【网安AIGC专题10.19】论文4:大模型(CODEX 、CodeGen 、INCODER )+自动生成代码评估:改进自动化测试方法、创建测试输入生成器、探索新的评估数据集扩充方法
486 1
|
7月前
|
机器学习/深度学习 算法
如何评估使用PyBrain训练的模型性能
使用PyBrain训练模型的性能评估包括:混淆矩阵(TP, TN, FP, FN, 准确率)、性能度量(准确率, 错误率)、泛化能力、数据集划分(训练集与测试集误差)以及其他指标如计算速度和鲁棒性。评估过程需综合考虑多种方法,并依据业务需求和模型类型选择合适的方式。
46 3
|
7月前
|
数据采集
【大模型】大语言模型训练数据中的偏差概念及其可能的影响?
【5月更文挑战第5天】【大模型】大语言模型训练数据中的偏差概念及其可能的影响?
|
7月前
|
机器学习/深度学习 算法
如何评估使用PyBrain训练的模型性能?
PyBrain模型性能评估包括混淆矩阵(TP, TN, FP, FN)、准确率与错误率、泛化能力、数据集划分与测试以及计算速度和鲁棒性等指标。评估过程需结合业务需求和模型类型选取合适方法。
37 1