评估数据集CGoDial问题之TKK框架在知识获取阶段进行训练的问题如何解决

简介: 评估数据集CGoDial问题之TKK框架在知识获取阶段进行训练的问题如何解决

问题一:除了模型预训练,还有哪些方法可以增强Text-to-SQL模型的鲁棒性?

除了模型预训练,还有哪些方法可以增强Text-to-SQL模型的鲁棒性?


参考回答:

除了模型预训练,我们提出一种让模型学习从简单到复杂的范式,称为TKK框架,来增强Text-to-SQL模型的鲁棒性。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655748


问题二:TKK框架主要包含哪几个阶段?

TKK框架主要包含哪几个阶段?


参考回答:

TKK框架主要包含三个阶段:任务拆解(Task decomposition)、知识获取(Knowledge acquisition)和知识组合(Knowledge composition)。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655749


问题三:在任务拆解阶段,TKK框架是如何工作的?

在任务拆解阶段,TKK框架是如何工作的?


参考回答:

在任务拆解阶段,TKK框架将原始Text-to-SQL任务分解为多个子任务,每个子任务对应于将自然语言问题映射到SQL查询的一个或多个子句,如SELECT、FROM、WHERE等子任务。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655750


问题四:TKK框架在知识获取阶段是如何进行训练的?

TKK框架在知识获取阶段是如何进行训练的?


参考回答:

在知识获取阶段,TKK框架采用基于提示词的学习策略,分别获取各个子任务的知识,并以多任务学习方式训练包含所有子任务的模型。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655751


问题五:TKK框架在知识组合阶段的主要目标是什么?

TKK框架在知识组合阶段的主要目标是什么?


参考回答:

在知识组合阶段,TKK框架的主要目标是在主任务(即生成整个SQL查询)上进行微调,以组合之前获得的子任务知识并学习它们之间的依赖关系。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655752

目录
打赏
0
1
1
0
78
分享
相关文章
EvalPlanner:基于“计划-执行”双阶段的大语言模型评估框架
EvalPlanner是一种创新的大语言模型(LLM)评估算法,采用计划-执行双阶段范式,生成无约束的评估计划并执行,从而提升评估的系统性和可靠性。该系统包含评估计划、计划执行模块和最终判决三个核心组件,通过自训练循环优化计划和执行过程。EvalPlanner在多个基准测试中表现出色,特别是在数据效率和泛化能力方面,为构建高效、稳健的LLM评估模型提供了新方向。
119 13
EvalPlanner:基于“计划-执行”双阶段的大语言模型评估框架
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
503 0
MMdetection框架速成系列 第02部分:整体算法流程+模型搭建流程+detection训练与测试核心组件+训练部分与测试部分的核心算法
众所周知,目标检测算法比较复杂,细节比较多,难以复现,而我们推出的 MMDetection 开源框架则希望解决上述问题。目前 MMdetection 已经复现了大部分主流和前沿模型,例如 Faster R-CNN 系列、Mask R-CNN 系列、YOLO 系列和比较新的 DETR 等等,模型库非常丰富,star 接近 13k,在学术研究和工业落地中应用非常广泛。
1796 0
|
7月前
评估数据集CGoDial问题之构建一个新的OpenIE评测范式的问题如何解决
评估数据集CGoDial问题之构建一个新的OpenIE评测范式的问题如何解决
评估数据集CGoDial问题之TKK框架提升模型泛化能力的问题如何解决
评估数据集CGoDial问题之TKK框架提升模型泛化能力的问题如何解决
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
【大模型】大语言模型训练数据中的偏差概念及其可能的影响?
【5月更文挑战第5天】【大模型】大语言模型训练数据中的偏差概念及其可能的影响?
如何通过评估方法评估机器学习模型的性能
如何通过评估方法评估机器学习模型的性能
189 0
|
10月前
大模型开发:描述一个你遇到过的具有挑战性的数据集问题以及你是如何解决它的。
在大模型开发中,面对不平衡数据集(某些类别样本远超其他类别)的问题,可能导致模型偏向多数类。在二分类问题中,正样本远少于负样本,影响模型学习和性能。为解决此问题,采用了数据重采样(过采样、欠采样)、SMOTE技术合成新样本、使用加权交叉熵损失函数、集成学习(Bagging、Boosting)以及模型调整(复杂度控制、早停法、正则化)。这些策略有效提升了模型性能,尤其是对少数类的预测,强调了针对数据集问题灵活运用多种方法的重要性。
102 0
ModelScope评估二次训练模型报错如何解决
ModelScope模型报错是指在使用ModelScope平台进行模型训练或部署时遇到的错误和问题;本合集将收集ModelScope模型报错的常见情况和排查方法,帮助用户快速定位问题并采取有效措施。
530 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等