评估数据集CGoDial问题之构建一个新的OpenIE评测范式的问题如何解决

简介: 评估数据集CGoDial问题之构建一个新的OpenIE评测范式的问题如何解决

问题一:当前OpenIE领域的工作通常采用什么样的评测方式?

当前OpenIE领域的工作通常采用什么样的评测方式?


参考回答:

当前OpenIE领域的工作通常采用独立同分布的评测方式,即训练集和测试集来源于分布类似的领域。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655758


问题二:为什么这种评测方式违背了OpenIE的初衷?

为什么这种评测方式违背了OpenIE的初衷?


参考回答:

因为这种评测方式限制了OpenIE从任意领域进行有效抽取的能力,而OpenIE的目标是能够从任意领域的文本中抽取知识。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655759


问题三:你们是如何构建一个新的OpenIE评测范式的?

你们是如何构建一个新的OpenIE评测范式的?


参考回答:

我们首先人工标注了一个大规模多领域的OpenIE测试集 GLOBE,并在SAOKE上训练模型,然后在GLOBE上测试,从而构建了一个更贴近真实的OpenIE评测范式。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655760


问题四:在新的评测范式下,当前的SOTA OpenIE模型表现如何?

在新的评测范式下,当前的SOTA OpenIE模型表现如何?


参考回答:

在新的评测范式下,当前的SOTA OpenIE模型会出现高达70%的性能损失。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655761


问题五:为什么SOTA模型在新的评测范式下性能损失如此之大?

为什么SOTA模型在新的评测范式下性能损失如此之大?


参考回答:

SOTA模型需要构建包含O(n^2)条连边的图来表示开放知识,任何一条连边错误都会导致错误的抽取结果,所以在领域变化导致抽取能力下降时不鲁棒。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655762

相关文章
|
2月前
|
人工智能
自动化、可复现,基于大语言模型群体智能的多维评估基准Decentralized Arena来了
Decentralized Arena(De-Arena)是一个用于评估大语言模型(LLM)的多维度、去中心化基准平台。它通过分布式评估机制提高公正性和透明度,采用多维度指标全面衡量模型性能,实现自动化和可复现的评估流程,促进LLM技术的健康发展与合作交流。
32 7
|
2月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
37 6
|
5月前
|
自然语言处理
评估数据集CGoDial问题之半监督终身语言学习是重要的问题如何解决
评估数据集CGoDial问题之半监督终身语言学习是重要的问题如何解决
|
5月前
|
SQL 自然语言处理 知识图谱
评估数据集CGoDial问题之TKK框架在知识获取阶段进行训练的问题如何解决
评估数据集CGoDial问题之TKK框架在知识获取阶段进行训练的问题如何解决
|
5月前
|
SQL 自然语言处理
评估数据集CGoDial问题之TKK框架提升模型泛化能力的问题如何解决
评估数据集CGoDial问题之TKK框架提升模型泛化能力的问题如何解决
|
6月前
|
自然语言处理
AIGC使用问题之GPT-1如何优化目标函数,如何做模型微调
AIGC使用问题之GPT-1如何优化目标函数,如何做模型微调
|
8月前
|
缓存 人工智能 数据可视化
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
|
7月前
|
机器学习/深度学习 数据采集 Python
机器学习模型的评估与选择标准
【6月更文挑战第1天】机器学习模型的评估至关重要,包括准确率、召回率、F1值和均方误差等指标。准确率衡量预测正确比例,召回率关注找出所有相关样本的能力,F1值是两者的综合。泛化能力同样重要,防止过拟合和欠拟合。不同场景可能侧重不同指标,如医疗诊断更关注召回率。选择模型需综合考虑多个因素,以实现最佳性能。通过实践和探索,我们可以更好地理解和优化模型评估,推动机器学习进步。
116 2
|
8月前
|
自然语言处理 测试技术
【大模型】描述一些评估 LLM 性能的技术
【5月更文挑战第5天】【大模型】描述一些评估 LLM 性能的技术
|
8月前
|
机器学习/深度学习 大数据
如何通过评估方法评估机器学习模型的性能
如何通过评估方法评估机器学习模型的性能
162 0