钉钉群直播【Spark Relational Cache 原理和实践】

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 主要介绍Relational Cache/物化视图的历史和背景,以及EMR Spark基于Relational Cache加速Spark查询的技术方案,及如何通过基于Relational Cache的数据预计算和预组织,使用Spark支持亚秒级响应的交互式分析使用场景。

直播回看点我

直播主题:

【Spark Relational Cache 原理和实践】

时间:

6月26日 19:00-20:00

分享嘉宾:

李呈祥,阿里巴巴计算平台事业部EMR团队的高级技术专家,Apache Hive Committer, Apache Flink Committer,深度参与了Hadoop,Hive,Spark,Flink等开源项目的研发工作,对于SQL引擎,分布式系统有较为深入的了解和实践,目前主要专注于EMR产品中开源计算引擎的优化工作。

内容介绍:

主要介绍Relational Cache/物化视图的历史和背景,以及EMR Spark基于Relational Cache加速Spark查询的技术方案,及如何通过基于Relational Cache的数据预计算和预组织,使用Spark支持亚秒级响应的交互式分析使用场景。

_Spark_Relational_Cache___

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
4月前
|
移动开发 分布式计算 Spark
Spark的几种去重的原理分析
Spark的几种去重的原理分析
59 0
|
4月前
|
机器学习/深度学习 SQL 分布式计算
Spark核心原理与应用场景解析:面试经验与必备知识点解析
本文深入探讨Spark核心原理(RDD、DAG、内存计算、容错机制)和生态系统(Spark SQL、MLlib、Streaming),并分析其在大规模数据处理、机器学习及实时流处理中的应用。通过代码示例展示DataFrame操作,帮助读者准备面试,同时强调结合个人经验、行业趋势和技术发展以展现全面的技术实力。
201 0
|
4月前
|
存储 分布式计算 数据处理
bigdata-35-Spark工作原理
bigdata-35-Spark工作原理
35 0
|
4月前
|
安全 机器人 数据安全/隐私保护
基于钉钉的阿里云管理实践(四)之续费充值
在阿里云资源的运营过程中,及时续费和充值是保障服务不中断的关键行动。借助钉钉及其集成的阿里云管理功能,用户可以方便地接收到续费通知,并完成充值过程。本教程将为您详细介绍从收到续费提醒信息到完成充值的全过程。
142 2
|
4月前
|
存储 分布式计算 负载均衡
【大数据技术Hadoop+Spark】MapReduce概要、思想、编程模型组件、工作原理详解(超详细)
【大数据技术Hadoop+Spark】MapReduce概要、思想、编程模型组件、工作原理详解(超详细)
158 0
|
4月前
|
存储 分布式计算 Hadoop
【大数据技术Hadoop+Spark】HDFS概念、架构、原理、优缺点讲解(超详细必看)
【大数据技术Hadoop+Spark】HDFS概念、架构、原理、优缺点讲解(超详细必看)
347 0
|
4月前
|
弹性计算 运维 监控
基于钉钉的阿里云管理实践(三)之运维管控
随着移动互联网的发展,使用移动设备进行云资源管理变得越来越普及。钉钉作为一款企业沟通和协作工具,其集成的阿里云控制台小程序让用户能够在移动端进行便捷的云资源管理操作。本教程将为您介绍如何在钉钉的阿里云控制台小程序内访问并操作阿里云资源。
172 1
|
2月前
|
分布式计算 Java Serverless
EMR Serverless Spark 实践教程 | 通过 spark-submit 命令行工具提交 Spark 任务
本文以 ECS 连接 EMR Serverless Spark 为例,介绍如何通过 EMR Serverless spark-submit 命令行工具进行 Spark 任务开发。
363 7
EMR Serverless Spark 实践教程 | 通过 spark-submit 命令行工具提交 Spark 任务
|
22天前
|
分布式计算 Serverless 数据处理
EMR Serverless Spark 实践教程 | 通过 Apache Airflow 使用 Livy Operator 提交任务
Apache Airflow 是一个强大的工作流程自动化和调度工具,它允许开发者编排、计划和监控数据管道的执行。EMR Serverless Spark 为处理大规模数据处理任务提供了一个无服务器计算环境。本文为您介绍如何通过 Apache Airflow 的 Livy Operator 实现自动化地向 EMR Serverless Spark 提交任务,以实现任务调度和执行的自动化,帮助您更有效地管理数据处理任务。
136 0
|
2月前
|
分布式计算 Hadoop Serverless
数据处理的艺术:EMR Serverless Spark实践及应用体验
阿里云EMR Serverless Spark是基于Spark的全托管大数据处理平台,融合云原生弹性与自动化,提供任务全生命周期管理,让数据工程师专注数据分析。它内置高性能Fusion Engine,性能比开源Spark提升200%,并有成本优化的Celeborn服务。支持计算存储分离、OSS-HDFS兼容、DLF元数据管理,实现一站式的开发体验和Serverless资源管理。适用于数据报表、科学项目等场景,简化开发与运维流程。用户可通过阿里云控制台快速配置和体验EMR Serverless Spark服务。
下一篇
DDNS